浏览全部资源
扫码关注微信
信息工程大学 导航与空天目标工程学院,河南 郑州,450000
收稿日期:2015-12-22,
修回日期:2016-03-03,
纸质出版日期:2016-05-25
移动端阅览
张振杰, 郝向阳, 程传奇等. 基于共面直线迭代加权最小二乘的相机位姿估计[J]. 光学精密工程, 2016,24(5): 1168-1175
ZHANG Zhen-jie, HAO Xiang-yang, CHENG Chuan-qi etc. Iteratively reweighted least squares method for camera pose estimation based on coplanar line correspondences[J]. Editorial Office of Optics and Precision Engineering, 2016,24(5): 1168-1175
张振杰, 郝向阳, 程传奇等. 基于共面直线迭代加权最小二乘的相机位姿估计[J]. 光学精密工程, 2016,24(5): 1168-1175 DOI: 10.3788/OPE.20162405.1168.
ZHANG Zhen-jie, HAO Xiang-yang, CHENG Chuan-qi etc. Iteratively reweighted least squares method for camera pose estimation based on coplanar line correspondences[J]. Editorial Office of Optics and Precision Engineering, 2016,24(5): 1168-1175 DOI: 10.3788/OPE.20162405.1168.
针对相机内参数已标定和未标定情况下的相机位姿求解
提出了基于共面直线迭代加权最小二乘的相机位姿估计算法。推导了关于相机焦距和位姿参数的线性方程
通过4条以上共面直线实现了相机位姿参数的线性解算;对参数线性解进行迭代加权最小二乘优化
得到更高精度的参数估计值和直线权值;最后
利用直线权值和欧式变换的保距性实现相机焦距的解算
得到了相机焦距和位姿参数的估计值。仿真实验表明:提出的算法在相机已标定
直线数为20
像点噪声方差为5 pixel的情况下
角度误差小于0.2°
相对平移向量误差小于0.5%
耗时大约为1 ms。真实数据实验表明
提出的算法可以获得与棋盘标定结果相近的精度。与现有算法相比
提出的算法抗噪性更好
精度更高
能够实现基于单幅图像的未标定相机的位姿估计。
To estimate the camera poses for calibrated or uncalibrated cameras
a novel pose estimation algorithm was proposed based on coplanar line correspondences and iteratively reweighted least squares. Firstly
a linear equation for the focus length and pose of the camera was established. The pose parameter was solved by more than four coplanar line correspondences. Then
the iteratively reweighted least square method was applied to optimizing the parameter
and the higher accurate estimated parameter and line weight were obtained. Finally
the focus length and pose parameters of the camera were obtained by calculation of line weight and the invariant distance of Euclidean transformation. Experimental results with simulative data indicate that the precision of angle is better than 0.2°
the precision of relative position is better than 0.5%
and consuming time is about 1 ms
when the focus length is known
and number of lines and noise level are 20 and 5
respectively. Moreover
the experimental results with real data indicate that the precision of proposed algorithm is close to chessboard calibration. As compared with the existing algorithm
the proposed algorithm is more accurate
robust
and is capable of estimating the pose of uncalibrated cameras based on a single image.
李喆,丁振良,袁峰. 基于共面点的多视觉测量系统的全局标定[J]. 光学精密工程,2008,16(3):467-472. LI ZH, DING ZH L, YUAN F. Global calibration method for multi-vision measurement system with coplanar targets[J].Opt. Precision Eng., 2008,16(3):467-472. (in Chinese)
杨博文,张丽艳,叶南. 机载设备安装姿态视觉校准中的靶板标定[J]. 光学精密工程,2014,22(9):2312-2320. YANG B W, ZHANG L Y, YE N. Target plate calibration for vision-based airborne equipment mounted attitude boresight[J]. Opt. Precision Eng., 2014,22(9):2312-2320.. (in Chinese)
张跃强,苏昂,刘海波,等. 基于多直线对应和加权最小二乘的位姿估计[J]. 光学精密工程,2015,23(6):1722-1731. ZHANG Y Q, SU A, LIU H B, et al.. Pose estimation based on multiple line hypothesis and iteratively reweighted least squares[J].Opt. Precision Eng., 2015,23(6):1722-1731. (in Chinese)
冯春,吴洪涛,陈柏. 基于多传感器融合的航天器间位姿参数估计[J]. 红外与激光工程,2015,44(5):1617-1622. FENG CH, WU H T, CHEN B. Method for relative pose parameters between spacecrafts based on mixing of multi-sensor[J]. Infrared and Laser Engineering, 2015,44(5):1617-1622. (in Chinese)
曾占魁,谷蔷薇,曹喜滨. 基于正交Procrustes分析的航天器单目视觉相对位姿确定方法[J]. 红外与激光工程,2015,44(S):113-118. ZENG ZH K, GU Q W, CAO X B. Relative pose monocular vision determination of spacecraft using orthogonal Procrustes analysis[J]. Infrared and Laser Engineering, 2015,44(S):113-118. (in Chinese)
LEPETIT V, NOGUER F M, FUA P. EPnP:An accurate O(n) solution to the PnP problem[J]. International Journal of Computer Vision, 2009, 81(2):155-166.
HESCH J A, ROUMELIOTIS S I. A Direct Least-Squares (DLS) method for PnP[C].IEEE International Conference on Computer Vision, 2011:383-390.
ZHENG Y, KUANG Y, SUGIMOTO S, et al.. Revisiting the PnP problem:A fast, general and optimal solution[C]. IEEE International Conference on Computer Vision, 2013:2344-2351.
刘昶,朱枫,欧锦军. 基于三条相互垂直直线的单目位姿估计[J]. 模式识别与人工智能,2012,25(5):737-744. LIU C, ZHU F, OU J J. Monocular pose determination from three perpendicular lines[J].PR&AI, 2012,25(5):737-744. (in Chinese)
LI S Q, XU C, XIE M. A robust O(n) solution to the perspective-n-point problem[J]. IEEE Transations on Pattern Analysis and Machine Intelligence, 2012, 34(7):1444-1450.
ANSAR A, DANIILIDIS K. Linear pose estimation from points or lines[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5):578-589.
MIRAZEI F M,ROUMELIOTIS S I. Globally optimal pose estimation from line correspondences[C]. IEEE International Conference on Robotics and Automation(ICRA), 2011:5581-5588.
李鑫,张跃强,刘进博,等. 基于直线段对应的相机位姿估计直接最小二乘法[J]. 光学学报,2015,35(6):0615003. LI X, ZHANG Y Q, LIU J B, et al..A direct least squares method for camera pose estimation based on straight line segment correspondences[J]. ACTA OPTICAL SINICA, 2015,35(6):0615003. (in Chinese)
张政,张小虎,傅丹. 一种高精度鲁棒的基于直线对应的位姿估计迭代算法[J]. 计算机应用,2008,28(2):326-329. ZHANG ZH, ZHANG X H, FU D. Accurate and robust iterative pose estimation from line correspondences[J]. Computer Application, 2008,28(2):326-329. (in Chinese)
ZHANG X H,ZHANG Z,LI Y,et al.. Robust camera pose estimation from unknown or known line correspondences[J]. Appl Opt. 2012,51(7):936-948.
张跃强,苏昂,刘海波,等. 基于多级直线表述和M-估计的三维目标位姿跟踪优化算法[J]. 光学学报,2015,35(1):0115003. ZHANG Y Q, SU A, LIU H B, et al.. Three dimensional rigid objects pose tracking and optimization based on multilevel line representation and M-Estimation[J].ACTA OPTICAL SINICA, 2015,35(1):0115003. (in Chinese)
于起峰,尚洋. 摄像测量学原理与应用研究[M]. 北京:科学出版社,2009. YU Q F, SHANG Y. Videometrics:Principles and Researches[M]. Beijing:Science Press, 2009. (in Chinese)
李书杰, 刘晓平. 摄像机位姿的高精度快速求解[J]. 中国图象图形学报, 2014, 9(1):20-27. LI SH J,LIU X P. An accurate and fast algorithm for camera pose estimation[J]. Journal of Image and Graphics,2014, 9(1):20-27. (in Chinese)
0
浏览量
458
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构