浏览全部资源
扫码关注微信
中国民航大学 电子信息与自动化学院 天津,300300
收稿日期:2016-01-08,
修回日期:2016-03-04,
纸质出版日期:2016-05-25
移动端阅览
张红颖, 郑轩,. 基于双目标模型的时空上下文跟踪算法[J]. 光学精密工程, 2016,24(5): 1215-1223
ZHANG Hong-ying, ZHENG Xuan,. Spatio-temporal context tracking algorithm based on dual-object model[J]. Editorial Office of Optics and Precision Engineering, 2016,24(5): 1215-1223
张红颖, 郑轩,. 基于双目标模型的时空上下文跟踪算法[J]. 光学精密工程, 2016,24(5): 1215-1223 DOI: 10.3788/OPE.20162405.1215.
ZHANG Hong-ying, ZHENG Xuan,. Spatio-temporal context tracking algorithm based on dual-object model[J]. Editorial Office of Optics and Precision Engineering, 2016,24(5): 1215-1223 DOI: 10.3788/OPE.20162405.1215.
传统的时空上下文跟踪算法在更新目标模型时不考虑跟踪结果的有效性
故目标被长时间遮挡后
目标模型容易被错误更新且难以修正。因此
本文提出了一种基于双目标模型的改进时空上下文跟踪算法以解决错误更新问题。该算法引入一个辅助目标判别模型来评估时空上下文算法跟踪结果的有效性
并根据评估结果对目标模型进行更新。辅助模型使用目标的局部纹理信息而不是相关性信息作为特征
在目标被长时间遮挡后也能准确评估更新内容的有效性
并能在遮挡结束后修正错误更新的目标模型。在多组数据集上的实验表明
改进算法在测试数据集上的跟踪成功率为82%
中心偏差为8 pixels;在长时间遮挡等干扰情况下的跟踪精度比原时空上下文算法有明显提升
实现了目标的可靠跟踪。
The original spatio-temporal context (STC) tracking algorithm does not take the tracking results into account when it updates an object model
so the object model is wrongly updated and hard to be recovered after long term occlusion. To solve this problem
an improved spatio-temporal context tracking algorithm based on a dual-object model is proposed in this paper. In this method
an auxiliary object model is introduced to evaluate the effectiveness of original STC algorithm
and to update the object model based on the tracking results accordingly. By using texture information rather than correlation information as the characteristics
the auxiliary object model evaluates exactly the updated contents and corrects wrong updates after long-term occlusion. Experimental results on several groups dada sets indicate that the success rate of the proposed algorithm is 82%
and the center location error is 8 pixels. It implements the stable tracking and the tracking precision is superior to that of the original STC algorithm in complex scenes
especially after long-term occlusions.
WU Y, LIM J W, YANG M H. Online object tracking:a benchmark[C]. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2013:2411-2418.
YILMAZ A, JAVED O, SHAH M. Object tracking:a survey[J]. ACM Computing Surveys, 2006, 38(4):13.
李静宇,王延杰. 基于子空间的目标跟踪算法研究[J]. 液晶与显示,2014,29(4):617-622. LI J Y, WANG Y J. Subspace-based target tracking algorithm[J]. Chinese Journal of Liquid Crystals and Displays, 2014,29(4):617-622.(in Chinese)
XU C, GAO M, YANG Y. Self-tuning hierarchical Kalman-particle filter for efficient target tracking[J]. Infrared and Laser Engineering,2015,44(6):1942-1949.
陈东成,朱明,高文, 等. 在线加权多示例学习实时目标跟踪[J]. 光学精密工程, 2014,22(6):1661-1667. CHEN D CH, ZHU M, GAO W, et al.. Real-time object tracking via online weighted multiple instance learning[J]. Opt. Precision Eng., 2014,22(6):1661-1667. (in Chinese)
程帅,曹永刚,孙俊喜,等. 用基于二值化规范梯度的跟踪学习检测算法高效跟踪目标[J]. 光学精密工程, 2015,23(8):2339-2348. CHENG SH, CAO Y G, SUN J X, et al.. Efficient target tracking by TLD based on binary normed gradients[J].Opt. Precision Eng., 2015,23(8):2339-2348. (in Chinese)
毛征,袁建建,吴珍荣,等. 基于在线特征选择的实时压缩跟踪[J]. 光学精密工程,2014,22(3):730-736. MAO ZH, YUAN J J, WU ZH R, et al.. Real-time compressive tracking based on online feature selection[J].Opt. Precision Eng., 2014,22(3):730-736. (in Chinese)
BOLME D S, BEVERIDGE J R, BRUCE A D, et al.. Visual object tracking using adaptive correlation filters[C]. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco:IEEE, 2010:2544-2550.
HENRIQUES J F, CASEIRO R, MARTINS P, et al.. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3):583-596.
ZHANG K H, ZHANG L, LIU Q S, et al.. Fast Visual Tracking Via Dense Spatio-Temporal Context Learning[M]. Zurich:Springer, 2014:127-141.
DAI M, LIN P J, WU L J, et al.. Orderless and blurred visual tracking via spatio-temporal Context[C]. MultiMedia Modeling, Springer, 2015:25-36.
WEI X, ZHANG S, CHAN S C. A novel visual object tracking algorithm using multiple spatial context models and Bayesian Kalman filter[C].2015 IEEE International Symposium on Circuits and Systems (ISCAS), Montreal:IEEE, 2015:1034-1037.
吕枘蓬, 蔡肖芋, 董亮, 等. 基于TLD框架的上下文目标跟踪算法[J]. 电视技术, 2015, 39(9):6-9 LU R P, CAI X Y, DONG L, et al.. Context object tracking algorithm based on TLD framework[J]. Video Engineering, 2015, 39(9):6-9.(in Chinese)
KALAL Z, MIKOLAJCZYK K, MATAS J. Tracking-Learning-Detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7):1409-1422.
ANNA B, ANDREW Z, XAVIER M. Image classification using random forests and ferns[C]. Proceedings of the 2007 IEEE International Conference on Computer Vision, Brazil:IEEE, 2007:1-8.
ZHANG K H, ZHANG L, YANG M H. Fast compressive tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(10):2002-2015.
PEREZ P, HUE C, VERMAAK J, et al.. Color-based probabilistic tracking[C]. Computer Vision-ECCV 2002, Antibes:Springer, 2002, 2350:661-675.
HELMUT G, MICHAEL G, HORST B. Real-time tracking via on-line boosting[C]. BMVC. Edinburgh:British Machine Vision Association, 2006,1:6.
AMIT A, EHUD R, ILAN S. Robust fragments-based tracking using the integral histogram[C]. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York:IEEE, 2006,1:798-805.
JUNSEOK K, KYOUNG M L. Tracking by sampling trackers[C]. Proceedings of the 2011 IEEE International Conference on Computer Vision, Barcelona:IEEE, 2011:1195-1202.
JUNSEOK K, KYOUNG M L. Visual tracking decomposition[C]. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco:IEEE, 2010:1269-1276.
THANG B D, NAM V, GÉRARD M. Context tracker:Exploring supporters and distracters in unconstrained environments[C]. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Colorado Springs:IEEE, 2011:1177-1184.
0
浏览量
468
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构