浏览全部资源
扫码关注微信
1. 天津大学 精密测试技术及仪器 国家重点实验室 天津,300072
2. 天津市计量监督检测科学研究院 天津,300192
收稿日期:2016-03-22,
修回日期:2016-04-12,
纸质出版日期:2016-06-25
移动端阅览
刘瑾, 蔡子晋, 张紫杨等. 光电容积脉搏波无创测量人体血液成分的评估[J]. 光学精密工程, 2016,24(6): 1264-1271
LIU Jin, CAI Zi-jin, ZHANG Zi-yang etc. Evaluation on noninvasive blood components measurement based on photolepthysmography[J]. Editorial Office of Optics and Precision Engineering, 2016,24(6): 1264-1271
刘瑾, 蔡子晋, 张紫杨等. 光电容积脉搏波无创测量人体血液成分的评估[J]. 光学精密工程, 2016,24(6): 1264-1271 DOI: 10.3788/OPE.20162406.1264.
LIU Jin, CAI Zi-jin, ZHANG Zi-yang etc. Evaluation on noninvasive blood components measurement based on photolepthysmography[J]. Editorial Office of Optics and Precision Engineering, 2016,24(6): 1264-1271 DOI: 10.3788/OPE.20162406.1264.
为了评估光电容积脉搏波法在人体血液主要成分检测方面的精度水平,基于朗伯比尔定律及简化的光电容积脉搏波法测量模型,给出了物质成分测量的极限分辨浓度公式。对公式中的三个要素,即人体测量时的光强信噪比、光程、被测物质的摩尔消光系数进行了评估,获得了理论上光电脉搏波法对血红蛋白、白蛋白、血糖的极限分辨浓度。评估结果表明,光电容积脉搏波法可以测量的血红蛋白、白蛋白和血糖的极限分辨浓度水平分别约为100 mg/dL,5000 mg/dL以及10 000 mg/dL。将该评价结果与现阶段临床需要的检测精度进行对比,可知光电容积脉搏波法能够满足需求,有望实现对血红蛋白的无创检测。
To evaluate the precision level of Photolepthysmography(PPG) in detection of the main components of human blood
the formula for the limit resolution concentration of material components measurement was given based on the Lambert-Beer's Law and simplified measurement model of PPG. Through the evaluation of three elements-Signal-to-Noise Ratio(SNR) of light intensity
optical path and the molar extinction coefficient of the blood components during human measurements
the theoretical limit resolution concentrations of the pulse oximeter signal method for hemoglobin
albumin and blood glucose were obtained. The evaluation result shows that the limit resolution concentration levels of hemoglobin
albumin and blood glucose which can be measured through PPG are respectively 100 mg/dL
5000 mg/dL and 10 000 mg/dL. The comparison of the evaluation result with the detection precision needed on clinic at the present stage indicates that the PPG can meet the demands for the non-invasive detection of hemoglobin.
ALLEN J. Photoplethysmography and its application in clinical physiological measurement[J]. Physiological Measurement, 2007, 28(3): R1.
ALDRICH T K, MOOSIKASUWAN M, SHAH S D, et al.. Length-normalized pulse photoplethysmography: A noninvasive method to measure blood hemoglobin, bronx, NY[J]. Annals of Biomedical Engineering, 2002, 30(10):1291-1298.
BERGSTRAND S, LINDBERG L G, EK A C, et al.. Blood flow measurements at different depths using photoplethysmography and laser Doppler techniques[J]. Skin Research and Technology, 2009, 15(2): 139-147.
JOBSIS F F. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters[J]. Science, 1977, 198(4323): 1264-1267.
MCMURDY J W, JAY G D, SUNER S, et al.. Noninvasive optical, electrical, and acoustic methods of total hemoglobin determination[J]. Clinical Chemistry, 2008, 54(2): 264-272.
陈星旦, 高静, 丁海泉. 论无创血糖监测的红外光谱方法[J]. 中国光学, 2012, 4(4):317-326. CHEN X D, GAO J, DING H Q. Infrared spectroscopy for non-invasive blood glucose monitoring[J]. Chinese Optics, 2012,4(4):317-326. (in Chinese)
YAMAKOSHI K, YAMAKOSHI Y. Pulse glucometry: a new approach for noninvasive blood glucose measurement using instantaneous differential near-infrared spectrophotometry[J]. Journal of Biomedical Optics, 2006, 11(5): 054028-054028-9.
李刚, 王焱, 李秋霞,等. 动态光谱法对提高近红外无创血液成份检测精度的理论分析[J]. 红外与毫米波学报, 2006, 25(5):345-348. LI G, WANG Y, LI Q X, et al.. Theoretic study on improving noninvasive measurement accuracy of blood component by dynamic spectrum method[J]. Journal of Infrared and Millimeter Waves, 2006, 25(5): 345-348. (in Chinese)
林凌, 李威, 周梅,等. EMD算法在动态光谱无创测量血红蛋白浓度中的应用[J]. 光谱学与光谱分析, 2014, 34(8):2106-2111. LIN L, LI W, ZHOU M, et al.. Application of EMD algorithm to the dynamic spectrum non-invasive measurement of hemoglobin[J]. Spectroscopy and Spectral Analysis, 2014, 34(8): 2106-2111. (in Chinese)
陈星旦. 近红外无创生化检验的可能性[J]. 光学 精密工程, 2008,16(5): 759-763. CHEN X D. Possibility of noninvasive clinical biochemical examination by near infrared spectroscopy [J]. Opt. Precision Eng., 2008, 16(5): 759-763. (in Chinese)
罗云瀚,陈哲,陈星旦. 近红外光谱无创血糖测量的极限检测浓度研究[J]. 光学 精密工程, 2008,16(5):784-789. LUO Y H, CHEN ZH, CHEN X D. Detection limit of glucose concentration in noninvasive sensing with near infrared spectroscopy [J]. Opt. Precision Eng., 2008,16(5):784-789. (in Chinese)
高洪智,卢启鹏,丁海泉,等. 应用光程校正空间方法提升近红外无创生化分析模型性能[J]. 光学 精密工程, 2013, 21(8): 1974-1980. GAO H ZH, LU Q P, DING H Q, et al.. Improvement of model performance for near-infrared non-invasive biochemical analysis by pathlength correction space method[J]. Opt. Precision Eng., 2013, 21(8): 1974-1980. (in Chinese)
LIU J, LIU R, XU K. Accuracy of noninvasive glucose sensing based on near-infrared spectroscopy[J]. Applied Spectroscopy, 2015, 69(11): 1313-1318.
李庆波, 徐可欣, 汪曣,等. 人体血糖浓度无创伤检测的必要测量条件[J]. 天津大学学报:自然科学与工程技术版, 2003, 36(2):139-142. LI Q B, XU K X, WANG Y, et al.. Primary discussion on prerequisites to noninvasive blood glucose[J]. Journal of Tianjin University: Sience and Technology, 2003, 36(2): 139-142. (in Chinese)
DELPY D T, COPE M, VAN DER ZEE P, et al.. Estimation of optical pathlength through tissue from direct time of flight measurement[J]. Physics in Medicine and Biology, 1988, 33(12): 1433-1442.
ULTMAN J S, PIANTADOSI C A. Differential pathlength factor for diffuse photon scattering through tissue by a pulse-response method[J]. Mathematical Biosciences, 1991, 107(1): 73-82.
CHEN J, ARNOLD M A, SMALL G W. Comparison of combination and first overtone spectral regions for near-infrared calibration models for glucose and other biomolecules in aqueous solutions[J]. Analytical Chemistry, 2004, 76(18): 5405-5413.
陈韵. 近红外无创血糖测量-基准波长浮动基准法的研究[D]. 天津:天津大学, 2009. CHEN Y. Study on Reference Wavelength Method for Non-invasive Blood Glucose Sensing with Near Infrared Spectroscopy[D]. Tianjin: Tianjin University, 2009. (in Chinese)
JENSEN P S, BAK J. Near-infrared transmission spectroscopy of aqueous solutions: Influence of optical pathlength on signal-to-noise ratio[J]. Applied Spectroscopy, 2002, 56(12): 1600-1606.
TAYLOR J R. An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements[M]. California: University Science Books, 1982:93-110.
GÓMEZ-SIMÓN A, NAVARRO-NUREZ L, PÉREZ- CEBALLOS E, et al.. Evaluation of four rapid methods for hemoglobin screening of whole blood donors in mobile collection settings[J]. Transfusion and Apheresis Science, 2007, 36(3): 235-242.
BAI C, CRAHAM L T, ARNOLD M A, et al.. Assessing and advancing technology for the noninvasive measurement of clinical glucose[J]. Analytical, 2008, 41:2773-2793.
张玲玲. 血液中的其他成分对近红外无创血糖检测影响的研究[D]. 天津:天津大学, 2012. ZHANG L L. Influence of Other Blood Components on Non-invasive Blood Glucose Sensing Studied with NIR Spectroscopy[D]. Tianjin: Tianjin University, 2012. (in Chinese)
0
浏览量
789
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构