浏览全部资源
扫码关注微信
山东大学(威海)机电与信息工程学院,山东 威海,264209
收稿日期:2016-01-11,
修回日期:2016-02-19,
纸质出版日期:2016-06-25
移动端阅览
翟鹏, 肖博涵, 贺凯等. 超磁致伸缩致动器的复合反馈控制及其在变椭圆销孔精密加工中的应用[J]. 光学精密工程, 2016,24(6): 1389-1398
ZHAI Peng, XIAO Bo-han, HE Kai etc. Composite backward control for GMA and its application in high precision machining of variable ellipse pinhole[J]. Editorial Office of Optics and Precision Engineering, 2016,24(6): 1389-1398
翟鹏, 肖博涵, 贺凯等. 超磁致伸缩致动器的复合反馈控制及其在变椭圆销孔精密加工中的应用[J]. 光学精密工程, 2016,24(6): 1389-1398 DOI: 10.3788/OPE.20162406.1389.
ZHAI Peng, XIAO Bo-han, HE Kai etc. Composite backward control for GMA and its application in high precision machining of variable ellipse pinhole[J]. Editorial Office of Optics and Precision Engineering, 2016,24(6): 1389-1398 DOI: 10.3788/OPE.20162406.1389.
针对非对称性销孔的镗削加工,研究了用于高负荷孔精密镗削装置的超磁致伸缩致动器(GMA)的相关控制。考虑GMA的迟滞非线性,分析了准静态改进型Prandtl-Ishlinskii(P-I)模型的数学机理;为提高其动态适用频域和控制精度,提出了结合相角前馈补偿的动态改进型P-I模型,获得了满意的控制效果。结合PID反馈控制搭建的闭环控制实验结果显示,GMA 的迟滞非线性由补偿前的14.5 %~67.2 %减小到1.5%~4.3%,有效降低了迟滞系统的非线性误差。在此基础上进行了椭圆销孔试镗削实验,结果显示其椭圆度均符合图纸要求,验证了补偿方法的正确性。本文的研究为实现高负荷异形孔的精密加工提供了新方法。
For high precision machining of asymmetric boring holes
a control technology of the Giant Magnetostictive Actuator (GMA) used in a precision high-load pinhole boring device was explored. According to the hysteresis nonlinearity of the GMA
the mathematic mechanism of the quasi static modified Prandtl-Ishlinskii(P-I) model was analyzed briefly. To broaden the application frequency domain and to improve the precision of quasi static modified P-I model
a modified dynamic P-I model was proposed by combining with hysteresis phase feedforword compensation
and good control results were obtained. The experiment of back loop control system based on the dynamic modified P-I model and a PID controller was conducted. Results after compensation show that the hysteresis nonlinearity of GMA has reduced from 14.5 %-67.2 % to 1.5%- 4.3% at the case of open loop control
which controls the nonlinear error of the hysteresis . Moreover
a boring experiment for an oval pin hole was performed
the obtained ovality accords with the requirement of drawings
and verifies the feasibility of the proposed method. The research in this paper provides a new method for machining high-load oval pinholes.
崔旭, 何忠波, 孙华刚, 等. 超磁致伸缩材料动态磁滞特性理论分析[J]. 微特电机,2012,40(11):4-10. CUI X,HE ZH B,SUN H G,et al..Theorectical analysis of dynamic characteristic for giant magnetostrictive material[J].Small & special Electrical Machines,2012,40(11):4-10.(in Chinese)
龚大成, 吕福在, 项占琴, 等. 复合前馈补偿的超磁致伸缩执行器精密伺服控制[J]. 光学 精密工程,2007,15(10):1589-1595. GONG D CH,LV F Z,XIANG ZH Q,et al..Precision servo control of GMA based on compounding feedforward compensation[J].Opt. Precision Eng.,2007,15(10):1589-1595.(in Chinese)
唐志峰,吕福在,项占琴. 超磁致伸缩微位移驱动器的非线性迟滞建模及控制方法[J]. 机械工程学报,2007,43(6):55-61.TANG ZH F,LV F Z,XIANG ZH Q.Nonlinear hysteresis model and control of magnetostrictive micropositioner[J].Chinese Journal of Mechanical Engineering,2007,43(6):55-61.(in Chinese)
CARMAN G P,MITROVIC M. Nonlinear constitutive relations for magnetostrictive Materials with applications to 1-D problems [J]. Journal of Intelligent Material Systems and Structures, 1995, 6 (5):673-683.
CARMN G P, MITROVIC M. Nonlinear constitutive relations for magnetrostrictive materials [C]. Proc. Of the 2nd International Conference on Intelligent Materials, 1994:265-278.
赵寅.超磁致伸缩驱动器建模及驱动控制研究[D]. 上海:上海交通大学,2013.
王俐, 饶长辉, 饶学军. 压电陶瓷微动台的复合控制[J]. 光学 精密工程,2012,20(6):1265-1271. WANG L, RAO C H, RAO X J. Feed-forward control of piezoelectric ceramic positioning stage[J]. Opt. Precision Eng., 2012,20 (6):1265-1271.
KUHEN K. Modeling, identification and compensation of complex hysteretic nonlinearities: A modified Prandtl-Ishlinskii approach [J]. European Journal of Control, 2003, 9(4): 407-418.
KUHEN K, JANOCHA H. Inverse feedforward controller for complex hysteretic nonlineraities in smart-material systems [J]. Control Intell. Syst., 2001,29(3):74-83.
杨斌堂,赵 寅,彭志科,等. 基于Prandtl-Ishlinskii模型的超磁致伸缩驱动器实时磁滞补偿控制 [J]. 光学 精密工程,2013,21 (1):124-130. YANG B T, ZHAO Y, PENG Z K, et al.. Real-time compensation control of hysteresis based on Prandtl-Ishlinskii operator for GMA [J]. Opt. Precision Eng., 2013,21 (1):124-130.
SCHÄFER J, JANOCHA H. Compensation of hysteresis in solid-state actuators[J]. Sensors and Actuators A:Physical,1995, 49(1): 97-102.
WEI T A, DONG SH, LI D. Feedforward ControllerWith Inverse Rate-Dependent Model for Piezoelectric Actuators in Trajectory-Tracking Applications [J]. Mechatronics, IEEE/ASME Trans, 2013, 21(5):1549-1557.
TAN X B, JOHN S B. Modeling and control of hysteresis in magnetostrictive actuators [J]. Automatica,2013,40(2004):1469-1480.
Cruz-Hernandez J M, Hayward V. Phase control approach to hysteresis reduction [J].IEEE Transactions on Control Systems Technology, 2001,9(1):17-26.
曲孟孟. 地震波法隧道地质超前预报用GMA可控震源研究[D]. 山东:山东大学(威海),2013. QU M M. Research of GMA Vibroseis for Tunnel Seismic Geological Advance Prediction[D]. Shandong: Shandong University(Weihai),2013.
QIN Y D, GAO W G, ZHANG D W. Rate-Dependent Hysteresis Modeling and Compensation of Piezo-Driven Flexure-Based Mechanism[J]. Transactions of Tianjin University,2013,18(3):157-167.
0
浏览量
379
下载量
7
CSCD
关联资源
相关文章
相关作者
相关机构