浏览全部资源
扫码关注微信
西北大学 信息科学与技术学院,陕西 西安,710127
收稿日期:2016-01-11,
修回日期:2016-03-08,
纸质出版日期:2016-06-25
移动端阅览
耿国华, 石晨晨, 魏潇然等. 3D打印中的模型分割与打包[J]. 光学精密工程, 2016,24(6): 1439-1447
GENG Guo-hua, SHI Chen-chen, WEI Xiao-ran etc. Model segmentation and packaging in 3D printing[J]. Editorial Office of Optics and Precision Engineering, 2016,24(6): 1439-1447
耿国华, 石晨晨, 魏潇然等. 3D打印中的模型分割与打包[J]. 光学精密工程, 2016,24(6): 1439-1447 DOI: 10.3788/OPE.20162406.1439.
GENG Guo-hua, SHI Chen-chen, WEI Xiao-ran etc. Model segmentation and packaging in 3D printing[J]. Editorial Office of Optics and Precision Engineering, 2016,24(6): 1439-1447 DOI: 10.3788/OPE.20162406.1439.
为了提高3D打印技术中三维模型的打印效率,减少打印材料耗费,缩短打印时间,提出了一种全局最优的模型分割与打包算法。首先,将给定模型分割为若干金字塔形状的分块。然后利用一种改进的禁忌搜索算法寻找最优打包方案,尽可能地减少支撑材料的体积,根据分块体积给出利于全局优化的初始解,并通过控制邻域生成规则以及候选解集,使得搜索更加高效并大幅提高寻优速度。最后,将打印成型的各部件拼合成整体。实验结果表明:生成的打包方案节省了14%~38%的打印时间,节省了21%-46%的打印材料。该方法模型分割产生的分块个数少、打包高效合理,不仅有效地提高打印效率,还减少了打印时间和支撑材料消耗。
To improve the printing efficiency of three-dimensional model of 3D printing technology and reduce the cost of printing materials and shorten printing time
a kind of global optimal model segmentation and packaging algorithm was proposed. Firstly
the model given was segmented into several blocks with the shape of pyramid. Then
the advantages of a kind of improved taboo search algorithm was taken to search for the optimal packaging scheme
and the volume of backing materials were reduced as far as possible. According to the volume of blocks
the initial solution which is beneficial to global optimization was provided
and by controlling neighborhood generative rule and candidate solution
the search was more efficient and the speed of optimization searching was sharply improved. Finally
various components formed by printing were compounded into the entirety. The experimental results indicate that for generated packaging scheme
the printing time with 14%-38% is saved
while the printing materials with 21%-46% are also saved. From the model segmentation by this method
there is few number of blocks caused
efficient and reasonable packages
which not only availably improves printing efficiency but also reduces printing time and backing materials consump- tion.
HU R Z, LI H H, ZHANG H, et al.. Approximate pyramidal shape decomposition[J]. Acm Transactions on Graphics, 2014, 33(6):Article No. 213.
LUO L J, BARAN I, RUSINKIEWICZ S, et al.. Chopper: partitioning models into 3D-printable parts[J]. Acm Transactions on Graphics, 2012, 31(6):439-445.
HAO J, FANG L, WILLIAMS R E. An efficient curvature-based partitioning of large-scale STL models [J]. Rapid Prototyping Journal, 2011, 17(2):116-127.
CHEN D, PITCHAYA S, LAN J T, et al.. Computing and fabricating multiplanar models[J]. Computer Graphics Forum, 2013, 32(32):305-315.
XIN S Q, LAI C F, FU C W, et al.. Making burr puzzles from 3D models[J]. Acm Transactions on Graphics, 2011, 30(4):76-79.
SONG P, FU C W, COHEN-Or D. Recursive interlocking puzzles[J]. Acm Transactions on Graphics, 2012, 31(6): 439-445.
SCHWARTZBURG Y, PAULY M. Fabrication-aware Design with intersecting planar pieces[J]. Computer Graphics Forum, 2013, 32(2):317-326.
SONG P, FU Z, LIU L, et al.. Printing 3D objects with interlocking parts[J]. Computer Aided Geometric Design, 2015, 35-36:137-148.
PAVLIDIS V F, FRIEDMAN E G. Three-Dimensional Integrated Circuit Design[M]. Massachusetts :Morgan Kaufmann Publishers Inc, 2009.
DOWSLAND K A. Some experiments with simulated annealing techniques for packing problems[J]. European Journal of Operational Research, 1993, 68(93):389-399.
WANG H, CHEN Y. A hybrid genetic algorithm for 3D bin packing problems[C]. 2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA), 2010, 703-707.
CHERNOV N, STOYAN Y, ROMANOVA T. Mathematical model and efficient algorithms for object packing problem[J]. Computational Geometry, 2010, 43(5):535-553.
VANEK J, GARCIA J A, BENES B, et al.. PackMerger : A 3D print volume optimizer[J]. Computer Graphics Forum, 2014, 33(6):322-332.
CHEN X, ZHANG H, LIN J. Dapper: decompose-and-pack for 3D printing[J]. ACM Transactions on Graphics, 2015,34(6): Article No. 213 .
GLOVER F, MARTI R. Tabu search[J]. General Information, 1998, 106(2):221-225.
冯筠,陈雨,仝鑫龙,等. 三维颅骨特征点的自动标定[J]. 光学 精密工程,2014,22(5):1388-1394. FENG J, CHEN Y, TONG X L, et al.. Automatic feature point extraction for three-dimensional skull [J]. Opt.Precision Eng., 2014, 22(5):1388-1394.(in Chinese)
张雨禾,耿国华,魏潇然. 散乱点云谷脊特征提取[J]. 光学 精密工程,2015,23(1):310-318. ZHANG Y H, GENG G H, WEI X R.Valley-ridge feature extraction from point clouds[J].Opt.Precision Eng., 2015, 23(1):310-318. (in Chinese)
宋长辉,杨永强, 张曼慧,等. 基于数字化3D技术的股骨假体再设计与激光选区熔化制造[J]. 光学 精密工程, 2014, 22(8):2117-2126. SONG CH H, YANG Y Q, ZHANG M H, et al.. Redesign and selective laser melting manufacturing of femoral component based on digital 3D technology[J]. Opt. Precision Eng. , 2014, 22(8):2117-2126. (in Chinese)
0
浏览量
173
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构