浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所,吉林 长春,中国,130033
2. 中国科学院大学 北京,中国,100049
收稿日期:2016-01-13,
修回日期:2016-03-08,
纸质出版日期:2016-06-25
移动端阅览
黄璇, 郭立红, 李姜等. 磷虾群算法优化支持向量机的威胁估计[J]. 光学精密工程, 2016,24(6): 1448-1455
HUANG Xuan, GUO Li-hong, LI Jiang etc. Threat assessment of support vector machine optimized by Krill Herd algorithm[J]. Editorial Office of Optics and Precision Engineering, 2016,24(6): 1448-1455
黄璇, 郭立红, 李姜等. 磷虾群算法优化支持向量机的威胁估计[J]. 光学精密工程, 2016,24(6): 1448-1455 DOI: 10.3788/OPE.20162406.1448.
HUANG Xuan, GUO Li-hong, LI Jiang etc. Threat assessment of support vector machine optimized by Krill Herd algorithm[J]. Editorial Office of Optics and Precision Engineering, 2016,24(6): 1448-1455 DOI: 10.3788/OPE.20162406.1448.
为提高目标威胁估计的预测精度,在传统支持向量机优化方法的基础上,提出了采用磷虾群算法优化支持向量机的威胁估计方法。介绍了磷虾群算法和支持向量机的原理,并基于此采用磷虾群算法对支持向量机中的惩罚参数和核函数参数进行优化,寻找最优的惩罚参数和核函数参数;建立磷虾群优化支持向量机的目标威胁估计模型,并实现基于该模型的目标威胁估计算法。采集90组原始数据组成训练集、30组数据组成测试集,对该目标威胁估计算法进行仿真实验。实验结果显示,磷虾群算法优化支持向量机的预测误差为0.002 91,小于采用粒子群算法或萤火虫算法优化的支持向量机。结果表明,磷虾群优化支持向量机的目标威胁估计方法可以有效地完成目标威胁估计。
To put forward the method of threat assessment of support vector machine optimized by Krill Herd algorithm based on the traditional support vector machine optimization method
so as to improve the forecast precision of target threat assessment. The thesis introduces the principles of Krill Herd algorithm and support vector machine and optimize the penalty parameter and kernel function parameter in the support vector machine with Krill Herd algorithm to find the optimal penalty parameter and kernel function parameter; establishes the model of target threat assessment of the support vector machine optimized by Krill Herd algorithm and achieves the target threat assessment algorithm based on this model. Collect 90 sets of original data to form the training set and 30 sets of data to form the test set to carry out simulation experiment on the target threat assessment algorithm. The experimental result shows that the forecast error of the support vector machine optimized by Krill Herd algorithm is 0.002 91 which is less than that of the support vector machine optimized by particle swarm algorithm or firefly algorithm. It can conclusion that the target threat assessment method of the support vector machine optimized by Krill Herd algorithm can effectively complete the target threat assessment.
王小龙,宋裕农,丁文强. 基于分层贝叶斯网络的反潜编队对潜威胁估计[J]. 火力与指挥控制,2014,39(4):82-85,90. WANG X L, SONG Y N, DING W Q. Method for evaluate threat of anti-submarine war fleet to submarine based on hierarchical bayesian network [J]. Fire Control and Command Control, 2014, 39(4):82-85,90. (in Chinese)
王毅,刘三阳,张文,等. 属性权重不确定的直觉模糊多属性决策的威胁评估方法[J]. 电子学报,2014,42(12): 2509-2514. WANG Y, LIU S Y, ZHANG W, et al.. Threat assessment method with uncertain attribute weight based on intuitionistic fuzzy multi-attribute decision [J]. Acta Electronica Sinica, 2014, 42(12): 2509-2514. (in Chinese)
谷向东,童中翔,柴世杰,等. 基于IAHP和离差最大化TOPSIS法目标威胁评估[J]. 空军工程大学学报: 自然科学版,2011,12(2): 27-31. GU X D, TONG ZH X, CHAI SH J, et al.. Target threat assessment based on TOPSIS combined by IAHP and the maximal deviation [J]. Journal of Air Force Engineering University: Natural Science Edition, 2011, 12(2): 27-31. (in Chinese)
耿涛,卢广山,张安. 基于Vague集的空中目标威胁评估群决策方法[J]. 系统工程与电子技术,2011,33(12): 2686-2690. GENG T, LU G SH, ZHANG A. Group decision-making method for air target threat assessment based on Vague sets [J]. Systems Engineering and Electronics, 2011, 33(12):2686-2690. (in Chinese)
王改革,郭立红,段红,等. 基于萤火虫算法优化BP神经网络的目标威胁评估[J]. 吉林大学学报:工学版,2013,43(4): 1064-1069. WANG G G, GUO L H, DUAN H, et al.. Target threat assessment using glowworm swarm optimization and BP neural network [J]. Journal of Jilin University: Engineering and Technology Edition, 2013, 43(4): 1064-1069. (in Chinese)
陈洁钰,姚佩阳,王勃,等. 基于结构熵和IGSO-BP算法的动态威胁评估[J]. 系统工程与电子技术,2015,37(5): 1076-1083. CHEN J Y, YAO P Y, WANG B,et al.. Dynamic threat assessment based on structure entropy and IGSO-BP algorithm [J]. Systems Engineering and Electronics, 2015, 37(5):1076-1083. (in Chinese)
LI P F, DONG L M, XIAO H C, et al.. A cloud image detection method based on SVM vector machine [J]. Neurocomputing, 2015, 169(SI):34-42.
LI H, CHUNG F L, WANG S T. A SVM based classification method for homogeneous data [J]. Applied Soft Computing, 2015, 36: 228-235.
程帅,孙俊喜,曹永刚,等. 增量深度学习目标跟踪[J]. 光学 精密工程,2015,23(4):1161-1170. CHENG SH, SUN J X, CAO Y G, et al.. Target tracking based on incremental deep learning [J]. Opt. Precision Eng., 2015, 23(4): 1161-1170. (in Chinese)
李姜,郭立红. 基于改进支持向量机的目标威胁估计[J]. 光学 精密工程,2014,22(5):1354-1362. LI J, GUO L H. Target threat assessment using improved SVM [J]. Opt. Precision Eng., 2014, 22(5): 1354-1362. (in Chinese)
ZHANG J X, WANG S T. A fast leave-one-out cross-validation for SVM-like family [J]. Neural Computing and Applications, 2015: 1-14.
NIETO P J G, GONZALO E G, LASHERAS F S,et al.. Hybrid PSO-SVM-based method for forecasting of the remaining useful life for aircraft engines and evaluation of its reliability [J]. Reliability Engineering and System Safety, 2015, 138: 219-231.
SELAKOV A, CVIJETINOVIC D, MILOVIC? L, et al.. Hybrid PSO-SVM method for short-term load forecasting during periods with significant temperature variations in city of Burbank [J]. Applied Soft Computing, 2014, 16: 80-88.
WANG Y K, HAN B X, ZHANG Y. A kind of coagulant dosing control model based on ISFLA-SVM [C]. Control and Decision Conference, 2015: 6417-6420.
GANDOMI A H, ALAVI A H. Krill Herd: a new bio-inspired optimization algorithm [J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17: 4831-4845.
WANG G G, GUO L H, GANDOMI A H, et al.. Chaotic Krill Herd Algorithm [J].Information Sciences, 2014, 274: 17-34.
WANG G G, GANDOMI A H, ALAVI A H, et al.. Stud Krill Herd Algorithm [J]. Neurocomputing, 2014, 128: 363-370.
GUO L H, WANG G G, GANDOMI A H, et al.. A new improved krill herd algorithm for global numerical optimization [J]. Neurocomputing, 2014, 138: 392-402.
张智,姜秋喜,徐梁昊. 磷虾群免疫粒子滤波的机载单站无源定位算法[J]. 火力与指挥控制,2015,40(4):92-97. ZHANG ZH, JIANG Q X, XU L H. Airborne single observer passive location based on krill herd immune particle filter [J]. Fire Control and Command Control, 2015,40(4):92-97. (in Chinese)
刘志健. 基于改进磷虾群算法的汽轮机真空优化方法的研究[D]. 秦皇岛:燕山大学,2015. LIU ZH J. Study of optimization method for the steam turbine vacuum based on the ameliorated krill herd [D]. Qinhuangdao:Yanshan University, 2015.(in Chinese)
0
浏览量
461
下载量
13
CSCD
关联资源
相关文章
相关作者
相关机构