浏览全部资源
扫码关注微信
南昌大学 机电工程学院,江西 南昌,330031
收稿日期:2016-02-13,
修回日期:2016-04-08,
纸质出版日期:2016-06-25
移动端阅览
吴禄慎, 史皓良, 陈华伟. 基于特征信息分类的三维点数据去噪[J]. 光学精密工程, 2016,24(6): 1465-1473
WU Lu-shen, SHI Hao-liang, CHEN Hua-wei. Denoising of three-dimensional point data based on classification of feature information[J]. Editorial Office of Optics and Precision Engineering, 2016,24(6): 1465-1473
吴禄慎, 史皓良, 陈华伟. 基于特征信息分类的三维点数据去噪[J]. 光学精密工程, 2016,24(6): 1465-1473 DOI: 10.3788/OPE.20162406.1465.
WU Lu-shen, SHI Hao-liang, CHEN Hua-wei. Denoising of three-dimensional point data based on classification of feature information[J]. Editorial Office of Optics and Precision Engineering, 2016,24(6): 1465-1473 DOI: 10.3788/OPE.20162406.1465.
为了有效去除获取三维点云数据时的噪声,同时又不损失模型的特征信息,提出了一种基于三维点云特征信息分类的去噪算法。首先采用主成分分析法和二次曲面拟合法估算三维点云的微分几何信息;然后根据点云平均曲率的局部特征权值,将点云数据划分为特征信息较少的平坦区域和特征信息丰富的区域,针对不同特征区域分别采用邻域距离平均滤波算法和自适应双边滤波算法进行去噪滤波。实验结果表明:滤波后点云数据的最大误差为0.144 7 mm,标准偏差为0.021 0 mm。在不同噪声强度下,该去噪算法均能够达到较好的去噪效果,并保留点云的高频特征信息。
To ensure no loss of feature information of model and effectively eliminate the noise at the time of acquisition of three-dimensional point cloud data
a kind of denoising algorithm based on classification of three-dimensional point cloud feature information was proposed. Firstly
the principal component analysis and conicoid fitting method were adopted to estimate the differential geometry information of three-dimensional point cloud. Then
according to the local feature weight of average curvature of point cloud
the cloud data was divided into flat region with little feature information and region with rich feature information. Pursuant to different feature regions
the average filtering algorithm with neighborhood distance and self-adaptive bilateral filtering algorithm were respectively adopted to perform denoising and filtering. The experimental results indicate that the maximum error of point cloud data is 0.144 7mm
and standard deviation is 0.021 0 mm after filtering. Under different noise intensities
this denoising algorithm may reach preferable denoising effects and reserve the high-frequency feature information of point cloud.
孙美玲,李永树,陈强,等. 基于迭代多尺度形态学开重建的城区LiDAR滤波方法[J]. 红外与激光工程,2015,44(1):363-369. SUN M L,LI Y SH, CHEN Q, et al.. Iterative multi-scale filter based on morphological opening by reconstruction for LIDAR urban data[J]. Infrared and Laser Engineering,2015,44(1):363-369.(in Chinese)
张雨禾,耿国华,魏潇然. 散乱点云谷脊特征提取[J]. 光学 精密工程,2015,23(1):310-318. ZHANG Y H, GENG G H, WEI X R. Valley-ridge feature extraction from point clouds[J]. Opt. Precision Eng.,2015,23(1):310-318.(in Chinese)
全燕鸣,黎淑梅,麦青群. 基于双目视觉的工件尺寸在机三维测量[J]. 光学 精密工程,2013,21(4):1054-1061. QUAN Y M, LI SH M, MAI Q Q. On-machine 3D measurement of workpiece dimensions on binocular vision [J]. Opt. Precision Eng.,2013,21(4):1054-1061. (in Chinese)
TAUBIN G. A signal processing approach to fair surface design [C].Mair S G,Cook R(eds.). The 22nd Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH95) . New York: ACM Press , 1995:351-358.
FLEISHMAN S, DRORI I, COHEN-Or D. Bilateral mesh denoising [J]. ACM Transactions on Graphics, 2003, 22(3): 950-953.
JONES T, DURAND F, DESBRUN M. Non-iterative, feature-preserving mesh smoothing[J]. ACM Transactions on Graphics, 2003, 22(3):943-949.
CLOUDHURY P, TUMBLIN J. The trilateral filter for high contrast images and meshes [C].Proc. of the Euro-graphics Symp. on Rendering. Heidelberg :Springer-Verlag Press, 2003:186-196.
梁新合,梁晋,郭成,等. 基于自适应最优邻域的散乱点云降噪技术研究[J]. 中国机械工程,2010,21(6):639-643. LIANG X H,LIANG J, GUO CH,et al.. Study on scatter point cloud denoising technology based on self-adaptive optimal neighborhood [J]. China Mechanical Engineering,2010,21(6):639-643. (in Chinese)
张鑫, 王章野, 范涵奇,等. 保特征的三维模型的三边滤波去噪算法[J]. 计算机辅助设计与图形学报,2009,21(7):936-942. ZHANG X, WANG ZH Y, FAN H Q, et al.. A feature preserving denoising approach for scanned models based on trilateral filtering [J]. Journal of Computer Aided Design & Computer Graphics, 2009,21(7):936-942. (in Chinese)
苏志勋, 栗志扬, 王小超. 基于法向修正及中值滤波的点云平滑[J]. 计算机辅助设计与图形学报,2010,22(11):1892-1898. SU ZH X, LI ZH Y, WANG X CH. Denoising of point-sampled model based on normal mollification and median filtering[J]. Journal of Computer Aided Design & Computer Graphics, 2010,22(11):1892-1898. (in Chinese)
葛宝臻,项晨,田庆国,等. 基于曲率特征混合分类的高密度点云去噪方法[J]. 纳米技术与精密工程,2012,10(1):64-67. GE B ZH, XIANG CH, TIAN Q G,et al.. Denoising approach of high density point clouds based on mixed classification of curvature features [J]. Nanotechnology and Precision Enineering, 2012,10(1):64-67. (in Chinese)
曹爽, 岳建平, 马文. 基于特征选择的双边滤波点云去噪算法[J]. 东南大学学报,2013,43(2):351-354. CAO SH, YUE J P, MA W. Bilateral filtering denoise algorithm for point cloud based on feature selection [J].Journal of Southeast University, 2013,43(2):351-354. (in Chinese)
BAO L, RUWEN S, REINHARD K,et al.. Robust normal estimation for point clouds with sharp features[J]. Computers &Graphics,2010, 34(2): 94-106.
刘彬,李梦瑞,林洪斌,等. 基于正交投影约束的点模型去噪 [J]. 计算机工程,2012,38(20):264-267. LIU B, LI M R, LIN H B, et al.. Denoising of point model based on orthogonal projection constraint[J]. Computer Engineering, 2012,38(20):264-267. (in Chinese)
GU X Y, LIU Y S, WU Q. A filtering algorithm for scattered point cloud based on curvature features classification [J]. Journal of Information & Computational Science ,2015,12(2):525-532.
袁小翠,吴禄慎,陈华伟. 特征保持点云数据精简[J]. 光学 精密工程2015,23(9):2666-2676. YUAN X C, WU L SH, CHEN H W. Feature preserving point cloud simplification[J]. Opt. Precision Eng., 2015,23(9):2666-2676. (in Chinese)
程效军, 贾东峰, 程小龙.海量点云数据预处理理论与技术[M]. 上海:同济大学出版社,2014.5. CHEN X J, JIA D F, CHEN X L. Theory and Technology of Mass Point Cloud Data Pretreatment[M].Shanghai: Tongji University Press,2014.5. (in Chinese)
0
浏览量
642
下载量
24
CSCD
关联资源
相关文章
相关作者
相关机构