浏览全部资源
扫码关注微信
复旦大学 电磁波信息科学教育部重点实验室 上海,200433
收稿日期:2016-02-19,
修回日期:2016-04-15,
纸质出版日期:2016-06-25
移动端阅览
王忠一, 蒋耿明,. 基于快速局域线性回归的IRAS/FY-3B大气温湿廓线反演[J]. 光学精密工程, 2016,24(6): 1529-1539
WANG Zhong-yi, JIANG Geng-ming,. Inversion of IRAS/FY-3B atmospheric temperature and humidity profiles based on fast locally linear regression[J]. Editorial Office of Optics and Precision Engineering, 2016,24(6): 1529-1539
王忠一, 蒋耿明,. 基于快速局域线性回归的IRAS/FY-3B大气温湿廓线反演[J]. 光学精密工程, 2016,24(6): 1529-1539 DOI: 10.3788/OPE.20162406.1529.
WANG Zhong-yi, JIANG Geng-ming,. Inversion of IRAS/FY-3B atmospheric temperature and humidity profiles based on fast locally linear regression[J]. Editorial Office of Optics and Precision Engineering, 2016,24(6): 1529-1539 DOI: 10.3788/OPE.20162406.1529.
提出一种快速的局域线性回归(Fast Locally Linear Regression, FLLR)算法,用于从搭载在风云三号B星(FY-3B)上的红外大气探测仪(IRAS)红外观测数据反演大气温湿廓线。算法所需的观测样本为IRAS/FY-3B L1数据红外观测值与AIRX2RET V5产品的时空匹配数据,以2011年为例,在180°W~180°E、60°N~60°S的研究区域内按照观测时间绝对差小于15 min和观测角度绝对差小于2°的条件获取观测样本,并对样本进行了评价。在匹配观测样本的基础上比较分析了FLLR算法与LLR算法、D矩阵算法和非线性的神经网络算法,然后采用FLLR算法从IRAS/FY-3B L1数据反演得到2011年全年的大气温湿廓线,并外推反演得到2012年第1季度的大气温湿廓线。最后,利用相应的ECMWF再分析数据和RAOB探空观测对2011年的反演结果进行了精度验证,采用AIRX2RET V5产品对2012年第1季度的外推反演结果进行了验证。结果显示:与D矩阵算法相比,FLLR算法反演大气温度和湿度廓线的均方根误差分别减小~0.8 K和~0.5 g/kg,其精度与非线性的神经网络算法相当;相对于ECMWF再分析数据,本文大气温度和湿度廓线反演结果的均方根误差分别小于2.5 K和2.3 g/kg;而相对于RAOB数据,其均方根误差分别小于3.5 K和2.0 g/kg;2012年第一季度外推反演结果的均方根误差分别小于2.5 K和1.6 g/kg,与算法精度基本一致。IRAS/FY-3B大气温湿廓线的反演精度与MOD07 V5大气廓线产品相当。
The FLLR algorithm was developed to retrieve atmospheric temperature and humidity profiles from IRAS/FY-3B data.The observation samples required by the algorithm are IRAS /FY-3B L1 observation value and time-spacing matching data of AIRX2RET V5. Take the year of 2011 for an example
the observation sample was obtained in the survey region of 180°W~180°E and 60°N~60°S under the condition that absolute difference of the observation time is less than 15min and absolute difference of the observation angle is lower than 2°
and then an evaluation on the sample was conducted. Based on the observation sample matching
a comparison and analysis was carried out on FLLR algorithm and LLR algorithm
D Matrix algorithm and non-linear neural network algorithm. Then the year-round atmospheric temperature and humidity profiles in 2011 were obtained from IRAS/FY-3B L1 data inversion by using the FLLR algorithm
and the profile in the first quarter of 2012 can be achieved through extrapolation inversion. The last step was a precision test on the inversion results of 2011 by means of corresponding ECMWF reanalysis data and RAOB radiosonde observation
as well as verification on the extrapolation inversion results in the first quarter of 2012. It demonstrates that compared with D Matrix algorithm
the root mean square error in the inversion of the atmospheric temperature and humidity profile by using the FLLR algorithm has respectively reduced by ~0.8K and ~0.5g/kg
while its precision is quite the same as the non-lineared neural network algorithm. With respect to ECMWF reanalysis data
the root mean square error of the atmospheric temperature and humidity profile inversion is respectively lower than 2.5 K and 2.3 g/kg
and for RAOB data
the root mean square error is lower than 3.5 K and 2.0 g/kg respectively. The root mean square error of the extrapolation inversion in the first quarter of 2012 is respectively lower than 2.5 K and 1.6 g/kg
and the precision is almost the same in different algorithms. The inversion precision of IRAS/FY-3B atmospheric temperature and humidity profile is quite the same as the precision of MOD07 V5 atmospheric profile.
王颖,黄勇,黄思源. 大气温湿廓线反演问题的研究[J]. 国土资源遥感,2008(1):23-26. WANG Y, HUANG Y, HUANG S Y. A preliminary study of the retrieval methods for atmosphere and humidity profiles [J].Remote Sensing For Land & Resources, 2008(1):23-26. (in Chinese)
CHAHINE M T. Inverse problems in radiative transfer: Determination of atmospheric parameters [J]. Journal of the Atmospheric Sciences, 1970, 27(6): 960-967.
RODGERS C D. Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation [J]. Reviews of Geophysics, 1976, 14(4): 609-624.
LI J, WOLF W W, MENZENL W P, et al.. Global soundings of the atmosphere from ATOVS measurements: The algorithm and validation [J]. Journal of Applied Meteorology, 2000, 39(8): 1248-1268.
AUGUST T, KLASE D, SCHLUSSEL P, et al.. IASI on metop-A: operational level 2 retrievals after five years in orbit [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2012, 113(11): 1340-1371.
LIU C Y, LIU G R, LIN T H, et al.. Using surface stations to improve sounding retrievals from hyperspectral infrared instruments [J]. IEEE Transactions on Geoscience and Remote Sensing,2014, 52(11): 6957-6963.
ROSENKRANZ P W,KOMICHAK M J,STAELIN P H.A method for estimation of atmospheric water vapor profiles by microwave radiometry[J].Journal of Applied Meteorology,1982,21(9):1364-1370.
SMITH W L, WOOLF H M. The use of eigenvectors of statistical covariance matrices for interpreting satellite sounding radiometer observations [J]. Journal of the Atmospheric Sciences, 1976, 33(7): 1127-1140.
BLACKWELL W J. A neural-network technique for the retrieval of atmospheric temperature and moisture profiles from high spectral resolution sounding data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(11): 2535-2546.
BLACKWELL W J, MILSTEIN A B. A neural network retrieval technique for high-resolution profiling of cloudy atmospheres [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(4): 1260-1270.
GANGWAR R K, MATHUR A K, GOHIL B S, et al.. Neural Network based retrieval of Atmospheric Temperature Profile using AMSU-A observations [J]. International Journal of Atmospheric Sciences, 2014, 2014:1-8.
QI C, CHEN Y, LIU H, et al.. Calibration and validation of the InfraRed Atmospheric Sounder onboard the FY3B satellite [J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(12): 4903-4914.
YAO Z G,CHEN H B,LIN L F. Retrieving atmospheric temperature profiles from AMSU-A data with neural networks [J]. Advances in Atmospheric Sciences, 2005, 22(4): 606-616.
GOLDBERG M D. Generation of retrieval products from AMSU-A: Methodology and validation [C]. Tech. Proc. 10th Int. TOVS Study Conf., 1999: 215-219.
薛留根. 现代非参数统计[M]. 北京:科学出版社,2015. XUE L G. Modern Nonparametric Statistics [M]. Beijing: Science Press, 2015. (in Chinese)
胡邦辉, 张惠君, 杨修群, 等. 基于非参数回归模型的局部线性估计云量预报方法研究[J]. 南京大学学报: 自然科学版, 2009, 45(1):89-97. HU B H, ZHANG H J, YANG X Q, et al.. A cloud amount forecasting method based on local linear estimation of non-parametric regression model [J]. Journal of Nanjing University (Natural Sciences), 2009,45(1):89-97. (in Chinese)
BOWMAN A W, AZZALINI A. Applied Smoothing Techniques for Data Analysis: The Kernel Approach with S-Plus Illustrations: The Kernel Approach with S-Plus Illustrations [M]. New York:Oxford University Press, 1997.
WASSERMAN L. All of nonparametric statistics [M]. New York:Springer Science & Business Media, 2006.
FETZER E J,OLSEN E T.Validation of AIRS/AMSU/HSB retrieved products[J].Proceedings of SPIE,2003,5(5):211-219.
董超华,李俊,张鹏,等. 卫星高光谱红外大气遥感原理和应用 [M]. 北京:科学出版社, 2013,92-93,98-103. DONG CH H, LI J, ZHANG P, et al.. Principles and Applications of Satellite Hyperspectral Infrared Atmospheric Remote Sensing [M]. Beijing: Science Press, 2013,92-93,98-103. (in Chinese)
邵士勇, 梅海平, 黄印博, 等. 大气气溶胶等效吸收的研究[J]. 红外与激光工程, 2014, 43(4): 1057-1061. SHAO SH Y, MEI H P, HUANG Y B, et al.. Analysis of effective absorption for atmospheric aerosol [J]. Infrared and Laser Engineering, 2014, 43(4): 1057-1061.(in Chinese)
徐梦春,徐青山. 气溶胶粒子特性和垂直分布对辐射的影响[J]. 红外与激光工程, 2016, 45(2): 211002-0211002(7). XU M CH, X Q SH. Effect of aerosol particle characteristic and vertical distribution on radiation [J]. Infrared and Laser Engineering, 2016, 45(2): 211002-0211002(7).(in Chinese)
徐寒列, 胡秀清, 徐娜, 等. FY-3C/可见光红外扫描辐射计中红外通道太阳污染的识别和修正[J]. 光学 精密工程, 2015, 23(7): 1874-1879. XU H L, HU X Q, XU N, et al.. Discrimination and correction for solar contamination on min-infrared band of FY-3C/VIRR [J]. Opt. Precision Eng., 2015, 23(7):1874-1879. (in Chinese)
王玲, 胡秀清, 陈林. 基于多种亮度稳定目标的 FY-3C/中分辨率光谱成像仪的反射太阳波段辐射定标[J]. 光学 精密工程, 2015, 23(7): 1911-1920. WANG L, HU X Q, CHEN L. FY-3C/MERSI calibration for solar band using multi-reflectance stable targets [J]. Opt. Precision Eng. 2015, 23(7):1911-1920. (in Chinese)
周蔚,蒋耿明. VIRR/FY-3A 分裂窗波段与 AIRS/AQUA 和 IASI/METOP-A 数据的交叉辐射定标 [J]. 光学 精密工程, 2015, 23(7): 1892-1902. ZHOU W, JIANG G M. Cross-calibration of VIRR/FY-3A split-window channels with AIRS/AQUA and IASI/METOP-A data [J]. Opt. Precision Eng., 2015, 23(7):1892-1902. (in Chinese)
BORBAS E E, LI J, MENZEL W P, et al.. MODIS atmospheric profile retrieval algorithm theoretical basis document[EB/OL]. http://eospso.nasa.gov/sites/default/files/atbd/atbd_mod07.pdf.2006.
张雪慧,官莉,王振会,等. 利用人工神经网络方法反演大气温度廓线[J]. 气象,2009,35(11): 137-142. ZHANG X H, GUAN L, WANG ZH H, et al.. Retrieving atmospheric temperature profiles using artificial neural network approch [J]. Meteorological Monthly, 2009,35(11):137-142. (in Chinese)
ALDYCHOY O A, ESKRIDGE R E. Improved Magnus form approximation of saturation vapor pressure [J]. Journal of Applied Meteorology, 1996, 35(4): 601-609.
0
浏览量
585
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构