浏览全部资源
扫码关注微信
1.中国科学院 上海应用物理研究所, 上海 201204
2.中国科学院大学, 北京 100049
[ "李勇军(1983-), 男, 湖南益阳人, 博士研究生, 助理研究员, 2006年于中南大学获得学士学位, 2009年于中国科学院研究生院获得硕士学位, 主要从事同步辐射光学工程方面的研究。E-mail:liyongjun@sinap.ac.cn" ]
薛松(1962-), 男, 天津人, 研究员, 博士生导师, 1984年于东北工学院获得学士学位, 主要从事同步辐射光学工程方面的研究。E-mail:xuesong@sinap.ac.cnE-mail:xuesong@sinap.ac.cn
收稿日期:2016-01-18,
纸质出版日期:2016-07
移动端阅览
李勇军, 张敏, 薛松, 等. 上海光源前端高热负载挡光器的结构设计与优化[J]. 光学精密工程, 2016,24(7):1640-1646.
Yong-jun LI, Min ZHANG, Song XUE, et al. Structure design and optimization of high heat load absorbers in SSRF front-end[J]. Optics and precision engineering, 2016, 24(7): 1640-1646.
李勇军, 张敏, 薛松, 等. 上海光源前端高热负载挡光器的结构设计与优化[J]. 光学精密工程, 2016,24(7):1640-1646. DOI: 10.3788/OPE.20162407.1640.
Yong-jun LI, Min ZHANG, Song XUE, et al. Structure design and optimization of high heat load absorbers in SSRF front-end[J]. Optics and precision engineering, 2016, 24(7): 1640-1646. DOI: 10.3788/OPE.20162407.1640.
为了有效处理上海光源前端挡光器接收的高热负载,研究了挡光器的结构设计及其优化方法。选用高导热性、高强度的GlidCop AL-15制造挡光器吸收体,采用直接水冷和掠入射结构提高其热缓释能力。以对流换热系数和压力降为评价指标,选用佩图克方程和达尔西-韦斯巴赫方程优化冷却水路,通过热分析得到了不同参数下挡光器的温度和热应力分析结果,从而确定了挡光器的结构设计优化参数。优化后挡光器的水路直径为6 mm,水路到光照面的距离为9 mm,光照面接线处圆角≥2 mm,且水路与光束方向基本平行。与初始结构相比,优化后挡光器的最高整体温度和最高冷却壁温度分别下降约8%和1/4,最大等效应力降低了1/2左右,完全满足上海光源前端部件的设计要求。目前,应用优化参数设计的挡光器已应用于上海光源实际工程中。
To handle the high heat load obtained by photon absorbers located in the front-end of Shanghai Synchrotron Radiation Facility (SSRF)
the structure design and optimization of photon absorbers were researched. The dispersion strengthened copper called GlidCop AL-15 was used to manufacture the absorbers. Direct water cooling and grazing incidence structures were used to improve thermal controlled-release ability of the front-end photon absorbers. The Petukhov formula and Darcy-Weisbach formula were selected to optimize cooling water channels. After thermal analysis with ANSYS for the temperature and thermal stress distributions of photon absorbers with different structure parameters
the structure optimization parameters of photon absorbers were determined. It shows that the diameter of cooling channels is 6 mm
the distance of photon confining surfaces to cooling channel walls is 9 mm
corner radiuses of two adjacent photon confining surfaces are bigger than 2 mm and the directions of cooling channels are parallel to the beam approximately. As compared to the original ones
the maximum temperatures of the photon absorbers and their cooling channel walls have declined by 8% and 1/4 respectively
the maximum equivalent stresse is only by half of the original ones. These results entirely satisfy the design requirements of SSRF front-end.
JIANG M H, YANG X, XU H J, et al.. Shanghai synchrotron radiation facility[J]. Chinese Science Bulletin, 2009, 54(22):4171-4181.
高飒飒, 卢启鹏, 彭忠琦, 等.超高真空精密四刀狭缝的结构原理及有限元分析[J].光学精密工程, 2013, 21(7):1741-1747.
GAO S S, LU Q P, PENG ZH Q, et al.. Principal and finite element analysis on UHV four-knife precision slit structure[J]. Opt. Precision Eng., 2013, 21(7):1741-1747.(in Chinese)
马磊, 卢启鹏, 彭忠琦.谱学显微光束线光斑水平漂移分析与检测[J].光学精密工程, 2012, 20(3):514-519.
MA L, LU Q P, PENG ZH Q. Analysis and test of light spot transversal transfer of spectromicroscopic beamline[J]. Opt. Precision Eng., 2012, 20(3):514-519.(in Chinese)
卢启鹏, 马磊, 彭忠琦.变包含角平面光栅单色器扫描转角精度的检测[J].光学精密工程, 2010, 18(7):1548-1553.
LU Q P, MA L, PENG ZH Q. Rotation-angle-accuracy measurement of scanning mechanism in variable included angle plane grating monochromater[J]. Opt. Precision Eng., 2010, 18(7):1548-1553.(in Chinese)
吴冠原.上海光源前端区工程设计报告[R]. 2006.
WU G Y. Engineering design report for SSRF front-end [R]. 2006.(in Chinese)
SHU D M, RAMANATHAN M. Design studies of the APS canted undulator beamline front ends[J]. Review of Scientific Instruments, 2002, 73(3):1580-1582.
SAKURAI Y, OURA M, TAKAHASHI S, et al.. Present status and performance of SPring-8 front ends[J]. Journal of Synchrotron Radiation , 1998, 18(5):1195-1198.
JASKI Y. Thermal analysis of the components of the insertion device front ends FEv 1.2 and FEv 1.5[R]. 2005.
徐朝银.同步辐射光学与工程[M].合肥:中国科学技术大学出版社, 2013.
XU CH Y. Optics and Engineering of Synchrotron Radiation [M]. Hefei:Press of University of Science and Technology of China, 2013.(in Chinese)
麦振洪.同步辐射光源及其应用[M].北京:科学出版社, 2013.
MAI ZH H. Synchrotron Radiation and Its Application [M]. Beijing:Science Press, 2013.(in Chinese)
XU ZH M, FENG X K, WANG N X, et al.. Thermal analysis of the first canted-undulator front-end components at SSRF[J]. Nuclear Instruments and Methods in Physics Research A, 2015, 774:94-102.
North American Hoganas High Alloys LLC. GlidCop technical book [OL]. http://www.hoganas.com/NAH http://www.hoganas.com/NAH .
GNIELINSKI V. New equations for heat and mass transfer in turbulent pipe and channel flow[J]. International Chemical Engineering, 1976, 16(2):359-368.
王厚华, 周根民, 李新禹.传热学[M].重庆:重庆大学出版社, 2006.
WANG H H, ZHOU G M, LI X Y. Heat Transfer [M]. Chongqing:Chongqing University Press, 2006.(in Chinese)
KUAN C K, SHENG I C, LIN H Y, et al.. Heat-transfer analysis of a water-cooled channel for the TPS front-end components[C]. Proceedings of the Fourth International Particle Accelerator Conference, Shanghai, P.R. China:IPAC, 2013:3466-3468.
张也影.流体力学[M].北京:高等教育出版社, 1999.
ZHANG Y Y. Fluid Dynamics [M]. Beijing:Higher Education Press, 1999.(in Chinese)
王纳秀, 刘石磊, 徐中民, 等. SSRF活动光子挡光器的模拟与实验结果比较[J].核技术, 2011, 34(3):165-168.
WANG N X, LIU SH L, XU ZH M, et al.. Comparison of photon shutter temperature measured in the front end of insertion devices at SSRF with the FEA simulation results[J]. Nuclear Techniques, 2011, 34(3):165-168.(in Chinese)
0
浏览量
562
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构