浏览全部资源
扫码关注微信
1.中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2.中国科学院大学, 北京 100039
付锦江(1988-), 男, 江西高安人, 博士研究生, 2010年于武汉理工大学获得学士学位, 主要从事光学精密机械设计及检测研究。E-mail: ytfjj17@tom.com E-mail:ytfjj17@tom.com
[ "颜昌翔(1973-),男,湖北洪湖人,研究员,2001年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事空间光学遥感技术方面的研究。E-mail: yancx@ciomp.ac.cn" ]
收稿日期:2015-11-12,
录用日期:2015-12-15,
纸质出版日期:2016-07
移动端阅览
付锦江, 颜昌翔, 刘伟, 等. 椭圆弧柔性铰链刚度简化计算及优化设计[J]. 光学精密工程, 2016,24(7):1703-1710.
Jin-jiang FU, Chang-xiang YAN, Wei LIU, et al. Stiffness calculation and optimal design of elliptical flexure hinges[J]. Optics and precision engineering, 2016, 24(7): 1703-1710.
付锦江, 颜昌翔, 刘伟, 等. 椭圆弧柔性铰链刚度简化计算及优化设计[J]. 光学精密工程, 2016,24(7):1703-1710. DOI: 10.3788/OPE.20162407.1703.
Jin-jiang FU, Chang-xiang YAN, Wei LIU, et al. Stiffness calculation and optimal design of elliptical flexure hinges[J]. Optics and precision engineering, 2016, 24(7): 1703-1710. DOI: 10.3788/OPE.20162407.1703.
本文主要研究了椭圆弧柔性铰链刚度的优化设计方法。首无,针对椭圆弧柔性铰链刚度计算公式过于复杂的问题,采用幂函数非线性曲线拟合的方法,推导了椭圆弧柔性铰链刚度的近似理论计算公式。然后,基于近似理论计算公式,分析了柔性铰链的精度特性及工作时的最大应力;采用GlobalSearch全域优化指令和Fmincon局域优化指令对椭圆弧柔性铰链工作方向的最大刚度进行了优化设计。最后,采用有限元仿真和实验验证的方法证实近似理论计算公式的适用性和优化结果的可靠性。验证显示:实验结果与近似理论计算结果的相对误差小于5%,表明提出的方法不仅省去了繁杂的有限元模型建立以及计算和修改的过程,大大提高了设计效率;而且通过优化计算可以得到椭圆弧柔性铰链的最大刚度。
An optimization design method for elliptical flexure hinges is researched. As the traditional calculation formula for the stiffness of elliptical flexure hinges is more complex
this paper deduces a approximate theoretical formula by nonlinear fitting method with power function. Based on the approximate theoretical formula
it analyzes the precision characteristics of the flexure hinges and their maximum stresses at working. Then
the global optimization solver GlobalSearch and local optimization solver Fmincon are used to design optimally the maximum stiffness of an elliptical flexure hinge at a working direction. Finally
the applicability of the approximate theoretical calculation equation and the accuracy of the optimization results are assessed by comparison with the results from finite element analysis and experimental data. The results show that the relative errors between the finite element simulation
experimental data and the approximate theoretical calculation for the stiffness of elliptic hinge are within 5%. It concludes that the method avoids establishing the complex finite element mode and the processes of calculation and modification
and greatly improves the design efficiency. Moreover
it can obtain the maximum stiffness of the elliptical flexure hinges by optimization calculation.
SEOT W, SITTI M. Tank-like module-based climbing robot using passive complaint joints[J]. IEEE/ASME Transactions on. Mechatronics ., 2013, 18(1):397-408.
WASON J D, WEN J T, DAGALSKIS N G. Dextrous manipulation of a micropart with multiple compliant probes through visual force feed-back[C]. in Proc. IEEE Int. Conf. Robot. Autom., Shanghai , 2011:6991-6996.
POLLITS, DONG J. Development of a high-bandwidth XY nanopo-sitioning stage for high-rate micro-nonmanufacturing[J]. IEEE/ASME Transactions on. Mechatronics ., 2011, 16(4):724-733.
BASHASHS, JALILI N. Robust adaptive control of coupled parallel piezo-flexural nano-positioning stages[J]. IEEE/ASME Transactions on. Mechatronics ., 2009, 14(1):11-20.
PAROS J M, WEISBORD L.How to design flexure hinges[J]. Machine Design , 1965, 37(27):151-156.
TSEYTLIN Y M. Notch flexure hinges:an effective theory[J]. Review of Scientific Instrument ., 2002, 73(9):3363-3368.
WU Y F, ZHOU ZH Y. Design calculations for flexure hinges[J]. Review of Scientific Instrument , 2002, 73(8):3101-3106.
LOBONTIU N, PAINE J, MALLEY E, et al . Parabolic and hyperbolic flexure hinges:flexibility, motion precision and stress characterization based on compliance closed-form equations[J]. Precision Engineering , 2002, 26:183-192.
RYU J W, GWEON D G. Error analysis of a flexure hinge mechanism induced by machining imperfection[J]. Precision Engineering , 1997, 21:83-89.
CHEN G M, WANG J L, LIU X Y. Generalized equations for estimating stress concentration factors of various notch flexure hinges[J]. Journal of Mechanical Design , 2014, 136(1):1-8.
SMITH S T, BADAMI V G, DALE J S, et al .Elliptical flexure hinges[J]. Review of Scientific Instrument , 1997, 68(3):1474-1483.
TIAN Y, SHIRINZADEH B, ZHANG D. Closed-form compliance equations of filleted V-shaped flexure hinges for compliant mechanism design[J]. Precision Engineering ., 2010, 34:408-418.
LOBONTIU N, MATT C, PETERSEN T. Planar compliances of symmetric notch flexure hinges:the right circularly corner-filleted parabolic design[J]. IEEE Transactions on Automation Science and Engineering , 2014, 11(1):169-176.
LOBONTIU N, PAINE J S N. Corner-filleted flexure hinges[J]. Journal of Mechanical Design , 2001, 123(3):346-352.
LIN R ZH, ZHANG X M, LONG X J, et al . Hybrid flexure hinges[J]. Review of Scientific Instrument , 2013, 84, 085004.
CHEN G M, SHAO X, HUANG X. Elliptically-arc-fillet flexure hinges:toward a generalized model for commonly used flexure hinges[J]. ASME Journal of. Mechanical. Design , 2011, 133(081002).
CHEN G M, JIA J Y, HAN Q. Geometrical profile optimization of elliptical flexure hinge using a modified particle swarm algorithm[C]. Springer-Verlag Berlin Heidelberg , 2005, 3644:533-542.
BONA F D, MUNTEANU M G. Optimized flexural hinges for compliant micro-mechanisms[J]. Analog Integrated Circuits and Signal Processing 44(2)(2005) 163-174.
ZELENIKA S, MUNTEANU M G, BONA F D. Optimized flexural hinge shapes for micro-systems and high-precision applications[J]. Mechanism and Machine Theory , 2009, 44:1826-1839.
XIE Z Y, QIU L F, BIAN X X, et al .Derivation of the precise calculation formula of compliance and optimal design of circular flexure hinge[C]. Proceedings of IEEE , 2011.
0
浏览量
602
下载量
7
CSCD
关联资源
相关文章
相关作者
相关机构