浏览全部资源
扫码关注微信
1.长春工业大学 计算机科学与工程学院, 吉林 长春 130012
2.吉林大学 通信工程学院, 吉林 长春 130022
3.中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
[ "王昕(1972-),女,辽宁大连人,博士,副教授,2003年于长春理工大学获得硕士学位,2007年于中国科学院长春光学精密机械与物理研究所获得博士学位,现为吉林大学博士后,主要从事图像融合,图像处理与机器视觉的研究。E-mail:wangxin315@ccut.edu.cn" ]
刘富(1968-),男,吉林农安人,博士生导师,教授,1994年、2002年于吉林大学分别获得硕士、博士学位,2004年香港理工大学博士后,主要从事计算机视觉与模式识别研究。E-mail:liufu@jlu.edu.cn E-mail:liufu@jlu.edu.cn
收稿日期:2015-07-07,
录用日期:2015-8-20,
纸质出版日期:2016-07
移动端阅览
王昕, 吉桐伯, 刘富. 结合目标提取和压缩感知的红外与可见光图像融合[J]. 光学精密工程, 2016,24(7):1743-1753.
Xin WANG, Tong-bo JI, Fu LIU. Fusion of infrared and visible images based on target segmentation and compressed sensing[J]. Optics and precision engineering, 2016, 24(7): 1743-1753.
王昕, 吉桐伯, 刘富. 结合目标提取和压缩感知的红外与可见光图像融合[J]. 光学精密工程, 2016,24(7):1743-1753. DOI: 10.3788/OPE.20162407.1743.
Xin WANG, Tong-bo JI, Fu LIU. Fusion of infrared and visible images based on target segmentation and compressed sensing[J]. Optics and precision engineering, 2016, 24(7): 1743-1753. DOI: 10.3788/OPE.20162407.1743.
针对红外与可见光图像融合易受噪声干扰从而使目标信息减弱的问题,提出了一种基于目标区域提取和压缩感知的融合算法。首先,在频率域上对红外图像进行显著区域检测得到其对应的显著度图,并在显著图指导下结合区域生长法提取红外图像的目标区域,有效抑制噪声与复杂背景的干扰。然后,用非下采样剪切波变换对待融合的图像进行分解,采用不同的融合策略分别对目标与背景区域的高、低频子带进行融合。针对背景区域提出一种新的基于多分辨率奇异值分解和压缩感知的融合规则,最后,进行非下采样剪切波逆变换得到融合图像。与其他算法的对比实验结果表明,本文算法能更好地突出目标区域,保留图像细节信息,抑制噪声干扰;图像质量评价指标中的信息熵、标准差、互信息、边缘保持度分别提高了3.94%,19.14%,9.96%和8.52%。
The image fusion of infrared and visible light is susceptible to noise and the target information is weakened easily. Therefore
a new fusion algorithm based on target area extraction and compressed sensing was proposed. Firstly
the infrared image was detected in a salient region at frequency-tuned domain to obtain a corresponding salient map. Under the guidance of the salient map
the infrared target area was extracted together with region growing method to effectively overcome the effects of noise and complex background interference on target segmentation. Then
non-subsampled shearlet transform was adopted to decompose the source images and the high and low frequency sub bands in the target and backgound regions were fused respectively. Finally
a new fusion rule was proposed based on multi-resolution singular value decomposition and compressed sensing
and the fused image was reconstructed by the non-subsampled shearlet inverse transform. As compared with the other algorithms
experimental results show that the algorithm highlights the target area
preserves the details of the source images and suppresses the noise interference. The image fusion quality evaluation indexes including information entropy
standard deviation
mutual information and transferred edge information have increased by 3.94%,19.14%,9.96% and 8.52%
respectively.
张蕾,金龙旭,韩双丽,等. 采用非采样Contourlet变换与区域分类的红外和可见光图像融合[J]. 光学精密工程, 2015, 23(3):810-818.
ZHANG L, JIN L X, HAN SH L,et al.. Fusion of infrared and visual images based on non-sampled Contourlet transform and region classification[J]. Opt. Precision Eng., 2015, 23(3):810-818.(in Chinese)
EASLEY G, LABATE D, LIM W Q. Sparse directional image representation using the discrete Shearlet transforms[J].Appl. Comput. Harm. Anal, 2008, 25(1):25-46.
KONG W, ZHANG L, LEI Y. Novel fusion method for visible light and infrared images based on NSST-SF-PCNN[J].Infrared Phys. Technol., 2014, 65:103-112.
周强,赵巨峰,冯华君,等. 非下采样剪切波的红外偏振图像融合[J]. 浙江大学学报(工学版), 2014, 48(8):1508-1516
ZHOU Q, ZHAO J F, FENG H J, et al.. Infrared polarization image fusion with NSST[J]. Journal of Zhejiang University(Engineering Scicnce), 2014, 48(8):1508-1516.(in Chinese)
DING M, WEI L, WANG B. Research on fusion method for infrared and visible images via compressive sensing[J].Infrared Phys. Technol, 2013, 57:56-67.
WANG R, DU L. Infrared and visible image fusion based on random projection and sparse representation[J]. Int. J.Remote Sens, 2014, 35(5):1640-1652.
何国栋,石建平,冯友宏,等. 基于压缩感知的红外与可见光图像融合算法[J]. 激光与红外, 2014, 44(5):582-585.
HE G D, SHI J P, FENG Y H, et al.. Fusion algorithm for infrared and visible image based on compressive sensing[J]. Laser & Infrared, 2014, 44(5):582-585.(in Chinese)
周渝人,耿爱辉,张强,等. 基于压缩感知的红外与可见光图像融合[J]. 光学精密工程, 2015, 23(3):855-863.
ZHOU Y R, GENG A H, ZHANG Q,et al.. Fusion of infrared and visible images based on compressive sensing[J]. Opt. Precision Eng., 2015, 23(3):855-863.(in Chinese)
杜峰, 施文康, 邓勇, 等. 一种快速红外图像分割方法[J]. 红外与毫米波学报, 2005, 24(3):370-373.
DU F, SHI W K, DENG Y, et al.. Fast infrared image segmentation method[J]. Journal of Infrared and Millimeter Waves, 2005, 24(3):370-373.(in Chinese)
云廷进, 郭永彩, 高潮. K-均值聚类中心分析法实现红外人体目标分割[J]. 光电工程, 2008, 35(3):140-144.
YUN T J, GUO Y CH, GAO CH. Human segmentation algorithm in infrared images based on K-means clustering centers analysis[J]. Opto-Electronic Engineering, 2008, 35(3):140-144.(in Chinese)
RADHAKRISHNA A, SHEILA H,FRAN-CISCO E, et al.. Frequency-tuned salient region detection[J]. Computer Vision and Pattern Recognition, 2009:1597-1604.
SHU T L, YANG B. Hybrid multiresolution method for multisensor multimodal image fusion[J].IEEE Sensors Journal, 2010, 10(9):1519-1526.
NAIDU V P S. Image fusion technique using multi-resolution singular value decomposition[J].Defence Science Journal, 2011, 61(5):479-484.
CANDÉS E, ROMBERG J, TAO T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8):1207-1233.
QU G H, ZHANG D L, YANG P F. Medical image fusion by wavelet transform modulus maxima[J]. Optics Express, 2001, 9(4):184-190.
孙永明,吴谨,刘劲,等. 基于DWT的高频系数压缩感知图像融合[J]. 红外技术, 2014, 36(9):714-718.
SUN Y M, WU J, LIU J, et al.. Image fusion based on compressed sensing of DWT high frequency coefficients[J]. Infrared Technology, 2014, 36(9):714-718.(in Chinese)
LI X, QIN S Y. Efficient fusion for infrared and visible images based on compressive sensing principle[J]. IET Image Processing, 2011, 5(2):141-147.
LIU K, GUO L, LI H H, et al.. Fusion of infrared and visible light images based on region segmentation[J]. Chinese Journal of Aeronautics, 2009(22):75-80.
陈小林,王延杰. 非下采样变换的红外与可见光图像融合[J]. 中国光学,2011,4(5):489-496.
CHEN X L, WANG Y J. Infrared and visible image fusion based on nonsubsampled contourlet transform[J]. Chinese Optics, 2011,4(5):489-596.(in Chinese)
LEUNG L W, KING B, VOHORA V. Comparison of image data fusion techniques using entropy and INI[C]. Proceedings of 22nd Asian Conference on Remote Sensing, Singapore, 2001:152-157.
QU G H, ZHANG D L, YAN P F. Information measure for performance of image fusion[J]. Electronic Letters, 2002, 38(7):313-315.
XYDES C S, PETROVI V. Objective image fusion performance measure[J]. Electronics Letters, 2000, 36(4):308-309.
0
浏览量
283
下载量
13
CSCD
关联资源
相关文章
相关作者
相关机构