浏览全部资源
扫码关注微信
合肥工业大学 数学学院, 安徽 合肥 230009
[ "殷明(1962-), 男, 安徽合肥人, 博士, 教授, 1985年于安徽师范大学获得学士学位, 1991年、2012年于合肥工业大学分别获得硕士、博士学位, 主要从事小波分析与图像处理等方面的研究。E-mail:ymhfut@126.com" ]
段普宏(1991-),男,安徽安庆人,硕士研究生,2014年于宿州学院获得学士学位,主要从事小波分析与应用、稀疏表示等方面的研究。E-mail:duanpuhong@126.com E-mail:duanpuhong@126.com
[ "褚标(1967-),男,安徽怀远人,博士,副教授,1990年于安徽师范大学获得学士学位,2000年、2008年于合肥工业大学分别获得硕士、博士学位,主要从事图像处理、CAGD等方面的研究。E-mail:hfgdhbt@163.com" ]
收稿日期:2016-02-26,
录用日期:2016-4-25,
纸质出版日期:2016-07
移动端阅览
殷明, 段普宏, 褚标, 等. 基于非下采样双树复轮廓波变换和稀疏表示的红外和可见光图像融合[J]. 光学精密工程, 2016,24(7):1763-1771.
Ming YIN, Pu-hong* DUAN, Biao CHU, et al. Fusion of infrared and visible images combined with NSDTCT and sparse representation[J]. Optics and precision engineering, 2016, 24(7): 1763-1771.
殷明, 段普宏, 褚标, 等. 基于非下采样双树复轮廓波变换和稀疏表示的红外和可见光图像融合[J]. 光学精密工程, 2016,24(7):1763-1771. DOI: 10.3788/OPE.20162407.1763.
Ming YIN, Pu-hong* DUAN, Biao CHU, et al. Fusion of infrared and visible images combined with NSDTCT and sparse representation[J]. Optics and precision engineering, 2016, 24(7): 1763-1771. DOI: 10.3788/OPE.20162407.1763.
提出了一种基于非下采样双树复轮廓波变换(NSDTCT)和稀疏表示的红外和可见光图像融合方法,以改善传统的基于小波变换的图像融合方法的不足。该方法首先利用形态学变换处理源图像,利用NSDTCT变换进行图像分解得到低频子带系数和高频子带系数。根据高低频系数的不同特点,提出改进的稀疏表示(ISR)的融合规则用于低频子带;然后将改进的空间频率作为脉冲耦合神经网络的外部输入,提出基于自适应双通道脉冲耦合神经网络(2APCNN)的融合策略用于高频子带。最后通过NSDTCT逆变换获得融合后的图像。实验结果表明:本文方法在客观指标和视觉效果方面均优于传统图像融合的方法。与传统的NSCT-SR方法相比,实验的两组图像中4个客观指标:互信息(MI)、边缘信息保留量Q
AB/F
,平均梯度(AG)和标准差(SD)分别提高了9.89%、6.39%、104.64%、55.09%和9.53%、17.77%、95.66%、52.89%。
A novel fusion method of infrared and visible images was proposed based on Non-subsampled Dual-tree Complex Contourlet Transform (NSDTCT) and sparse representation to overcome the shortcomings of traditional image fusion method based on wavelet transform. With the proposed method
morphological transform was used to deal with source images
and then the source images were decomposed by the NSDTCT to obtain the low frequency sub-band coefficients and high frequency sub-band coefficients. According to the different characteristics of the low and high frequency coefficients
an Improved Sparse Representation (ISR) fusion rule was proposed for the low frequency sub-bands; Then
the improved spatial frequency was used as the external input of a pulse coupled neural network
and a fusion method based on the improved adaptive dual channel pulse coupled neural network (2APCNN) was presented for the high frequency sub-bands. Finally
the fused image was obtained by performing the inverse NSDTCT. Experimental results indicate that the proposed method outperforms the conventional image fusion methods in terms of both objective evaluation criteria and visual quality. As compared with conventional NSCT-SR method
the fusion quality indexes
Mutual Information (MI)
Mount of edge Information (Q
AB/F
)
Average Gradient (AG) and Standard Deviation (SD) have increased by 9.89%
6.39%
104.64%
55.09%
and 9.53%
17.77%
95.66%
52.89%
respectively.
杨桄,童涛,陆松岩,等. 基于多特征的红外与可见光图像融合[J]. 光学精密工程,2014,22(2):489-496.
YANG G, TONG T, LU S Y, et al.. Fusion of infrared and visible images based on multi-features[J]. Opt. Precision Eng., 2014, 22(2):489-496.(in Chinese)
曾祥通,张玉珍,孙佳嵩,等. 颜色对比度增强的红外与可见光图像融合方法[J]. 红外与激光工程,2015,44(4):1198-1202.
ZENG X T, ZHANG Y ZH, SUN J S,et al.. One color contrast enhanced infrared and visible image fusion method[J]. Infrared and Laser Engineering, 2015, 44(4):1198-1202.(in Chinese)
陈贞,邢笑雪. 基于非下采样Shearlet变换与压缩感知的图像融合[J]. 液晶与显示, 2015, 30(6):1024-1031.
CHEN ZH, XING X X. Image fusion algorithm based on non-subsampled Shearlet transform and compressed sensing[J]. Chinese Journal of Liquid Crystals and Displays, 2015, 30(6):1024-1031.(in Chinese)
DO M N, VETTERLI M. The contourlet transform:an efficient directional multiresolution image representation[J]. IEEE Transactions on Image Processing, 2005, 14(12):2091-2106.
da CUNHA A L, ZHOU J P, DO M N. The nonsub-sampled contourlet transform:theory, design, and applications[J]. IEEE Transactions on Image Processing, 2006, 15(10):3089-3101.
杨粤涛,朱明,贺柏根,等. 采用改进投影梯度非负矩阵分解和非采样Contourlet变换的图像融合方法[J]. 光学精密工程, 2011, 19(5):1143-1150.
YANG Y T, ZHU M, HE B G, et al.. Fusion algorithm based on improved projected gradient NMF and NSCT[J].Opt. Precision Eng., 2011, 19(5):1143-1150.(in Chinese)
殷明,刘卫. 非下采样Contourlet变换域混合统计模型图像去噪[J]. 光子学报, 2012, 41(6):751-756.
YING M, LIU W. Image denoising using mixed statistical model in nonsubsampled Contourlet transform domain[J]. Acta Photonica Sinica, 2012, 41(6):751-756.(in Chinese)
YING M, LIU W, ZHAO X, et al.. Image denoising using trivariate prior model in nonsubsampled dual-tree complex contourlet transform domain and non-local means filter in spatial domain[J]. Optik, 2013, 124(24):6896-6904.
KINGSBURY N. The dual-tree complex wavelet transform:a new efficient tool for image restoration and enhancement[C]. Proceedings of Europen Signal Processing Conforence, 1998:319-322.
KINGSBURY N. A dual-tree complex wavelet transform with improved orthogonality and symmetry properties[C]. International Conference on Image Processing, 2000, 2:375-378.
KINGSBURY N G. Design of Q-Shift complex wavelets for image processing using frequency domain energy minimization[C].Processing of IEEE International Conference on Image Processing, 2003:1013-1016.
YANG B, LI S T.Multifocus image fusion and restoration with sparse representation[J]. IEEE Transactions on Instrumentation and Measurement, 2010, 59(4):884-892.
彭真明,景亮,何艳敏,等. 基于多尺度稀疏字典的多聚焦图像超分辨融合[J]. 光学精密工程,2014,22(1):169-176.
PENG ZH M, JING L, HE Y M,et al.. Superresolution fusion of multi-focus image based on multiscale sparse dictionary[J]. Opt. Precision Eng., 2014, 22(1):169-176.(in Chinese)
DIANA D N, ANUSMINA D J. Fusion and restoration of multifocus image using sparse representation[C]. IEEE-International Conference on Advances in Engineering, Science and Management, 2012:291-296.
YAN R M, SHAO L, LIU Y. Nonlocal hierarchical dictionary using wavelets for image denoising[J]. IEEE Transactions on Image Processing, 2013, 22(12):4689-4698.
LIU Y, LIU S P, WANG Z F. A general framework for image fusion based on multi-scale transform and sparse representation[J]. Information Fusion, 2015, 24(7):147-164.
陈广秋,高印寒,段锦,等. 基于奇异值分解的PCNN红外与可见光图像融合[J]. 液晶与显示,2015,30(1):126-136.
CHEN G Q, GAO Y H, DUAN J, et al.. Fusion algorithm of infrared and visible images based on singular value decomposition and PCNN[J]. Chinese Journal of Liquid Crystals and Displays, 2015, 30(1):126-136.(in Chinese)
WANG Z B, MA Y. Medical image fusion using m-PCNN[J]. Information Fusion, 2008, 9(2):176-185.
ZHANG B H, LU X Q, JIA W T. A multi-focus image fusion algorithm based on an improved dual-channel PCNN in NSCT domain[J]. Optik, 2013, 124(20):4104-4109.
CHIHIRO I, ZHANG S J, YOKO U,et al.. A novel fusion algorithm for visible and infrared image using non-subsampled contourlet transform and pulse-coupled neural network[C]. IEEE-International Conference on Computer Vision Theory and Applications(VISAPP), 2014:160-164.
CHEN J, ZHANG B, QI Y,et al.. Image edge detection method based on multi-structure and multi-scale mathematical morphology[J]. International Conference on Multimedia Technology, 2010:1-4.
CUI P, NI L. Joint reconstruction algorithm for distributed compressed sensing[J]. Infrared and Laser Engineering,2015, 44(12):3825-3830.(in Chinese)
张小利,李雄飞,李军. 融合图像质量评价指标的相关性分析及性能评估[J]. 自动化学报,2014,40(2):306-315.
ZHANG X L, LI X F, LI J. Validation and correlation analysis of metrics for evaluating performance of image fusion[J]. Acta Automatica Sinica,2014,40(2):306-315.(in Chinese)
0
浏览量
425
下载量
12
CSCD
关联资源
相关文章
相关作者
相关机构