浏览全部资源
扫码关注微信
海军航空工程学院 控制科学与工程系, 山东 烟台 264001
郭少军(1985-), 男, 湖南洞口人, 助理工程师, 博士研究生, 2008年、2011年于海军航空工程学院分别获得学士、硕士学位, 主要从事目标检测与识别, 计算机视觉等方面的研究。E-mial:guoba2000@163.com , E-mial:guoba2000@163.com
[ "娄树理(1976-), 男, 山东蒙阴人, 博士, 副教授, 2004年、2011于海军航空工程学院分别获得硕士、博士学位, 主要从事多源目标成像技术, 目标检测与识别等研究。E-mail:shulilou@sina.com" ]
收稿日期:2016-04-27,
录用日期:2016-5-31,
纸质出版日期:2016-07
移动端阅览
郭少军, 娄树理, 刘峰. 应用颜色聚类图像块的多舰船显著性检测[J]. 光学精密工程, 2016,24(7):1807-1817.
Shao-jun GUO, Shu-li Lou, Feng LIU. Multi-ship saliency detection via patch fusion by color clustering[J]. Optics and precision engineering, 2016, 24(7): 1807-1817.
郭少军, 娄树理, 刘峰. 应用颜色聚类图像块的多舰船显著性检测[J]. 光学精密工程, 2016,24(7):1807-1817. DOI: 10.3788/OPE.20162407.1807.
Shao-jun GUO, Shu-li Lou, Feng LIU. Multi-ship saliency detection via patch fusion by color clustering[J]. Optics and precision engineering, 2016, 24(7): 1807-1817. DOI: 10.3788/OPE.20162407.1807.
由于多舰船目标显著性检测过程容易将边界像素作为背景处理,本文提出了应用颜色聚类图像块的多舰船显著性检测方法。该方法首先检测邻域像素是否具有颜色相似性,并将临近的具有相似颜色的像素聚集在一起作为一个图像块。接着,对获得的图像块进行扩展,使图像块包含很多其他图像块的像素以提高图像块内像素间的对比强度;对边缘像素进行背景索引标记,计算图像块中像素的显著性强度,采用阈值分割方法获得目标显著性区域。最后,基于颜色聚类的图像块存在部分重叠的特点,利用权值对存在叠加的显著性图像进行融合,从而获得多舰船目标整幅图像的显著性检测结果。对获得的多舰船目标图像进行了实验测试,并对本文算法结果和当前比较先进的其它显著性检测算法进行了效果对比。结果显示:提出的利用颜色聚类图像块的舰船显著性检测方法的查全率达到78%以上,准确率达到92%以上,综合评价指标
F
β
≥0.7;无论考虑单个指标还是整体指标,本文算法均优于其他对比算法。
Because the boundary pixels are easy to be classified as a background in the multi ship target detecting processing
this paper proposes a multi-ship saliency detection method based on patch fusion by color clustering. Firstly
this method detects the color similarity of the pixels in the neighbourhood
and the adjacent pixels with the similar color are gathered as an image patches. Then
the image patches are expanded to make them include some pixels of other patches
so as to enhance the contrast value of the pixels of patches. Then
edge pixels are marked in the background index to calculate the saliency ability of the pixels in image patches and the threshold segmentation method is used to obtain the saliency region of the target. As the image patches have the features of partial overlap
the weight values are used to fuse the saliency images with the partial overlaps
so that the saliency detection results on a whole image for the multi-ship targets are obtained. The experimental tests are carried out for the multi-ship target images
and the results from the proposed algorithm in this paper and the current advanced detection algorithms are compared. The results show that the proposed method based on patch fusion by color clustering has the recall rate more than 78%
the accurate above 92%
and its comprehensive evaluation index
F
β
is more than 0.7. Both for comparisons of the single index or the entire indexes in this experiments
the algorithm is superior to other methods.
GOFERMAN S, ZELNIK-MANOR L, TAL A. Context-aware saliency detection[J].IEEE Transactions on Software Engineering, 2012, 34(10):1915-1926.
RAMIK D M, SABOURIN C, MORENO R, et al .. A machine learning based intelligent vision system for autonomous object detection and recognition[J].Applied Intelligence, 2014, 40(2):358-375.
ITTI L. Automatic foveation for video compression using a neurobiological model of visual attention[J].IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society, 2004, 13(10):1304-1318.
CHEN T, CHENG M M, TAN P, et al .. Sketch2 Photo:internet image montage[J].ACM Transactions on Graphics, 2010, 28(5):89-97.
RUAN X C O C. Image saliency map determination device, method, program, and recording medium:EP2797051[P]. 2014.
WEI Y, FENG J, TAO L, et al .. Salient object detection by composition:US, US8989437[P]. 2015.
GOPALAKRISHNAN V HU YQ, RAJAN D. Random walks on graphs for salient object detection in images[J].IEEE Transactions on Image Processing, 2011, 19(12):3232-3242.
LIU T, YUAN Z J, SUN J, et al .. Learning to detect a salient object[J].Pattern Analysis & Machine Intelligence, 2010, 33(2):353-367.
LU Y, ZHANG W, LU H, et al .. Salient object detection using concavity context[C].IEEE International Conference on Computer Vision. Milpitas, CA, 2011:233-240.
WANG L, XUE R, ZHENG N N, et al .. Automatic salient object extraction with contextual cue[C].IEEE International Conference on Computer Vision(ICCV), Barcelona, Spain, 2011:105-112.
HAREL J, KOCH C, PERONA P:Graph-based visual saliency[J].Advances in Neural Information Processing Systems, 2006, 19:545-552.
ACHANTA R, ESTRADA F, WILS P, et al .. Salient region detection and segmentation[J].Lecture Notes in Computer Science, 2008:66-75.
CHENG M M, ZHANG G X, MITRA N J, et al .. Global contrast based salient region detection[C]. IEEE International Conference on Computer Vision. Milpitas, CA, 2011:409-416.
ECONOMOU P, TZAVELAS G. Kullback-Leibler divergence measure based tests concerning the biasness in a sample[J].Statistical Methodology, 2014, 21(11):88-108.
XIE Y L, LU H C, YANG M H. Bayesian saliency via low and mid level cues[J].IEEE Transactions on Image Processing, 2012, 22(5):1689-1698.
FRANCOIS A R J, SCHULTZ J. Image processing based on depth information and color data of a scene:US, US8823745[P]. 2014.
WU B, XU L. Integrating bottom-up and top-down visual stimulus for saliency detection in news video[J].Multimedia Tools & Applications, 2014, 73(3):1053-1075.
ITTI L, KOCH C, NIEBUR E. A model of saliency-based visual attention for rapid scene analysis[J].IEEE Transactions on Pattern Analysis & Machine Intelligence, 1998, 20(11):1254-1259.
HOU X D, HAREL J, KOCH C. Image signature:highlighting sparse salient regions[J].IEEE Transactions on Pattern Analysis & Machine Intelligence, 2012, 34(1):194-201.
ITTI L, KOCH C. Computational modelling of visual attention. Nature Reviews Neuroscience [J], 2001, 2:194-203. http://www.oalib.com/references/14728997
CHENGM M. Saliency and similarity detection for image scene analysis [D].[Ph.D. dissertation] , Tianjin:Nan Kai University, 2012:33-56.
CHANTA R, HEMAMI S, ESTRADA F, et al .. Frequency tuned salient region detection[C]. IEEE International Conference on Computer Vision and Pattern Recognition, Miami, Florida, USA, 2009:1597-1604.
HOU X, ZHANG L. Saliency detection:a spectral residual approach[C]. IEEE Conference on Computer Vision and Pattern Recognition.Portland, Oregon, USA, 2013:1-8.
GUO C, MA Q, ZHANG L. Spatio-temporal Saliency detection using phase spectrum of quaternion fourier transform[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Anchorage, Alaska, USA, 2008:1-8.
CASTELHANO M S, HEAVEN C. Scene context influences without scene gist:Eye movements guided by spatial associations in visual search[J].Psychonomic Bulletin & Review, 2011, 18(5):890-896.
CHENG M M, ZHANG G X, MITRA N J, et al .. Global contrast based salient region detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3):409-416.
ZHANG J, SCLAROFF S. Exploiting surroundedness for saliency detection:a boolean map approach[J].IEEE Transactions on Pattern Analysis & Machine Intelligence, 2015:1-1.
YANG C, ZHANG L H, LU H C, et al .. Saliency detection via graph-based manifold ranking[C]. IEEE Conference on Computer Vision and Pattern Recognition., Portland, Oregon, USA, 2013:3166-3173.
ZHANG X, CAHILL N D. SLIC superpixels for efficient graph-based dimensionality reduction of hyper spectral imagery[C]. SPIE Defense+Security, International Society for Optics and Photonics, Baltimore, USA. 2015:1-4.
BAHETI P K, BARMAN K K, KRISHNAMOORTHI R, et al .. Identifying a maximally stable extremal region by skipping comparison of pixels in the region, WO 2014014687 A1[P]. 2014:23-35.
XU M, ZHANG H. Saliency detection with color contrast based on boundary information and neighbors[J].Visual Computer, 2014, 31(3):355-364.
LI B, LI R H, KING I, et al .. A topic-biased user reputation model in rating systems[J].Knowledge & Information Systems, 2015, 44(3):581-607.
ANDREW Y NG, MICHAEL I. Jordan and YAIR Weiss. on spectral clustering:analysis and an algorithm[P]. 2002, 2:849C856.
ZHANG W J, XIONG Q Y. Image salient region detection algorithm based on contrast and spatial location[J].Joumal of University:Engineering and Technology Edition, 2015, 45(5):1709-1716.
陈维真, 张春华, 周晓东.基于局部直方图高斯拟合的星图背景性质研究[J].红外技术, 2008, 30(4):230-233.
CHEN W ZH, ZHANG CH H, ZHOU X D. Study of star-sky image background characteristics based on local-histogram gaussian fitting method[J].Infrared Technology, 2008, 30(4):230-233.(in Chinese)
0
浏览量
287
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构