浏览全部资源
扫码关注微信
1.中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2.中国科学院大学, 北京 100039
[ "徐东甫(1987-),男,吉林省吉林市人,博士研究生,2011年于吉林大学获得学士学位,主要从事无人飞行器组合导航与控制方面的研究。E-mail:xu.dong.fu@163.com" ]
E-mail: baiy@ciomp.ac.cn
[ "续志军(1953-),男,吉林长春人,研究员,博士生导师,主要从事电子技术、自动控制方面的研究。E-mail:xuzj538@ciomp.ac.cn" ]
收稿日期:2015-11-12,
录用日期:2016-1-11,
纸质出版日期:2016-08-25
移动端阅览
徐东甫, 白越, 宫勋, 等. 多旋翼无人机在变控制量下的三轴磁罗盘校正[J]. Editorial Office of Optics and Precision Engineeri, 2016,24(8):1940-1947.
Dong-fu XU, Yue BAI, Xun GONG, et al. Correction of 3-axis magnetic compass in multi-rotor UAV under variable control amounts[J]. Optics and precision engineering, 2016, 24(8): 1940-1947.
徐东甫, 白越, 宫勋, 等. 多旋翼无人机在变控制量下的三轴磁罗盘校正[J]. Editorial Office of Optics and Precision Engineeri, 2016,24(8):1940-1947. DOI: 10.3788/OPE.20162408.1940.
Dong-fu XU, Yue BAI, Xun GONG, et al. Correction of 3-axis magnetic compass in multi-rotor UAV under variable control amounts[J]. Optics and precision engineering, 2016, 24(8): 1940-1947. DOI: 10.3788/OPE.20162408.1940.
为了在特殊环境下有效使用多旋翼无人机飞行器的磁罗盘,研究了大电流、控制量变化情况下磁罗盘的校正问题,提出了一种磁罗盘自适应校准方法。推导了磁罗盘误差的变化规律并建立了误差模型,分析了硬磁误差随控制量变化的规律,进而提出了一种基于整体最小二乘法的空间直线拟合方法。通过空间直线拟合,将得到的控制量和硬磁补偿的对应关系用于实时调整对空间飞行器的硬磁补偿,最终解决了控制量变化对磁罗盘的影响。进行了实验验证,结果表明:提出的方法可将飞行器控制量变化带来的磁罗盘硬磁误差基本抵消;在实际飞行中,多旋翼无人飞行器的偏航误差可由最大的15°减小到3°以内。本文所给出的方法在控制量变化,大电流情况下使用时,可以很好地校正磁罗盘航向角误差,提高导航精度。
To use effectively the magnetic compass in a multi-rotor Unmanned Aerial Vehicle(UAV) in special environments
this paper researches the magnetic deviation correction method when it works at a large current and a variable control amount. Firstly
the variation patterns of magnetic deviation were derived and an error model was established. The relationship between hard magnetic error and the control amount was also analyzed. Then
a spatial linear fitting method was proposed based on Total Least Square (TLS). Finally
the relationship between hard magnetic error and control amount was adopted to implement the hard magnetic compensation of the UAV. In this way
the magnetic deviation was adaptively compensated and the compass was corrected in real time. Experimental results indicate that the hard magnetic deviation from the changed control amount can be counteracted by proposed method
and the yaw error of the UAV reduces from 15°to less than 3°during the flight. It concludes that the method proposed in this paper effectively corrects the yaw error of the magnetic compass when it works at the high current and large control amount and the navigation accuracy and capability to variable loads of the UAV is improved greatly.
李迪, 陈向坚, 续志军. 增益自适应滑模控制器在微型飞行器飞行姿态控制中的应用[J]. 光学 精密工程, 2013, 21(5): 1183-1191.
LI D, CHENG X J, XU ZH J. Gain adaptive sliding mode controller for flight attitude control of MAV[J]. Opt Precision Eng., 2013, 21(5): 1183-1191.
钱默抒, 姜斌, 许德智, 等. 无人机姿控系统鲁棒动态面容错控制设计[J]. 系统工程与电子技术, 2014, 36(9): 1798-1803.
QIU M SH, JIANG B, XU D ZH, et al.. Robust dynamics surface fault tolerant control design for attitude control systems of UAV[J].Systems Engineering and Electronics, 2014, 36(9): 1798-1803.
宫勋, 白越, 赵常均, 等. Hex-Rotor无人飞行器及其飞行控制系统设计[J]. 光学 精密工程, 2012, 20(11): 2450-2458.
GONG X, BAI Y, ZHAO CH J, et al.. Hex-Rotor aircraft and its autonomous flight control system [J]. Opt. Precision Eng., 2012, 20(11): 2450-2458. (in Chinese)
张欣, 白越, 赵常均, 等. 多旋翼姿态解算中的改进自适应扩展Kalman算法[J]. 光学 精密工程, 2014, 22(12): 3384-3390.
ZHANG X, BAI Y, ZHAO CH J, et al.. Improved adaptive extended Kalman algorithm for attitude estimation of multi-rotor UAV [J]. Opt. Precision Eng., 2014, 22(12): 3384-3390. (in Chinese)
SEBESTA K D, BOIZOT N. A real-time adaptive high-gain EKF, applied to a quadcopter inertial navigation system [J].IEEE Transactionson Industrial Electronics, 2014, 61(1): 495-503.
GRZONKA S, GRISETTI G, BURGARD W. A fully autonomous indoor quadrotor[J].Robotics, IEEE Transactions on, 2012, 28(1): 90-100.
FANG J, SUN H, CAO J, et al.. A novel calibration method of magnetic compass based on ellipsoid fitting[J]. Instrumentation and Measurement, IEEE Transactions on, 2011, 60(6): 2053-2061.
MARKOVIC R, KRAJNC A, MATKO D. Calibration of a solid-state magnetic compass using angular-rate information from low-cost sensors[J]. Science, Measurement & Technology, IET, 2011, 5(2): 54-58.
LI M, ROUF V T, THOMPSON M J, et al..Three-axis Lorentz-force magnetic sensor for electronic compass applications[J].Microelectromechanical Systems, Journal of, 2012, 21(4): 1002-1010.
FARAJIDAVAR A, BLOCK J M, GHOVANLOO M. A comprehensive method for magnetic sensor calibration: A precise system for 3-D tracking of the tongue movements[C].Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE. IEEE, 2012: 1153-1156.
戴磊, 齐俊桐, 吴冲, 等. 旋翼飞行机器人磁罗盘误差分析及校准[J]. 2012, 23(4): 418- 423.
DAI L, QI J T, WU CH, et al.. Magnetic compass error analysis and calibration for rotorcraft flying robot [J].Robot, 2012, 23(4): 418-423.
蔡体菁, 刘莹, 宋军, 等. 嵌入式 GPS/MIMU/磁罗盘组合导航系统[J]. 仪器仪表学报, 2011 (12): 2695-2699.
CAI T J, LIU Y, SONG J, et al.. Embedded integrated GPS/MIMU/compass navigation system[J]. Chinese Journal of Scientific Instrument, 2010, 31(12): 2695-2699.
刘诗斌. 无人机磁航向测量的自动罗差补偿研究[J]. 航空学报, 2007, 28(2): 411-414.
LIU SH B, Study on automatic magnetic deviation compensation of mafntic heading measurement for UAV [J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(2): 411-414.
MARKOVIC R, KRAJNC A, MATKO D. Calibration of a solid-state magnetic compass using angular-rate information from low-cost sensors[J]. Science, Measurement & Technology, IET, 2011, 5(2): 54-58.
刘仁浩, 王华. 数字磁罗盘的全姿态罗差补偿[J]. 光学 精密工程, 2011, 19(8): 1867.
LIU R H, WANG H. All attitudemagnetic deviation compensationfor digital magnetic compass [J]. Opt. Precision Eng., 2011, 19(8): 1867.
丁克良, 沈云中, 欧吉坤. 整体最小二乘法直线拟合[J]. 辽宁工程技术大学学报: 自然科学版, 2010 (1): 44-47.
DING K, SHENG Y, OU J K. Methods of line-fitting based on total least-squares [J]. Journal of Liaoning Technical University (Natural Science), 2010, 29(1): 44-47.
韩辅君, 徐静, 宋世忠. 基于低成本多传感器的自适应组合滤波[J]. 光学 精密工程, 2011, 19(12): 3007-3015.
HAN F J, XU J, SONG SH ZH. Adaptive attitude estimation filtering with low-cost multi-sensors for MAHRS[J]. Opt. Precision Eng., 2011, 19(12): 3007-3015.
0
浏览量
484
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构