浏览全部资源
扫码关注微信
1.哈尔滨工业大学 机电工程学院, 黑龙江 哈尔滨 150001
2.成都精密光学工程研究中心, 四川 成都 610041
[ "汪圣飞(1985-),男,四川成都人,博士研究生,2009年于哈尔滨工业大学获得学士学位,2011年于哈尔滨工业大学获得硕士学位,主要从事材料力学性能及超精密切削机理方面的研究。E-mail:robertwsf@sina.com" ]
E-mail: zhangfh@hit.edu.cn
收稿日期:2016-03-11,
录用日期:2016-4-15,
纸质出版日期:2016-08-25
移动端阅览
汪圣飞, 安晨辉, 张飞虎, 等. 磷酸二氢钾晶体飞切过程中温度场的分布及其对切屑形貌的影响[J]. Editorial Office of Optics and Precision Engineeri, 2016,24(8):1948-1955.
Sheng-fei WANG, Chen-hui AN, Fei-hui ZHANG, et al. Thermal field distribution in fly-cutting of KDP crystal and its influence on chip morphology[J]. Optics and precision engineering, 2016, 24(8): 1948-1955.
汪圣飞, 安晨辉, 张飞虎, 等. 磷酸二氢钾晶体飞切过程中温度场的分布及其对切屑形貌的影响[J]. Editorial Office of Optics and Precision Engineeri, 2016,24(8):1948-1955. DOI: 10.3788/OPE.20162408.1948.
Sheng-fei WANG, Chen-hui AN, Fei-hui ZHANG, et al. Thermal field distribution in fly-cutting of KDP crystal and its influence on chip morphology[J]. Optics and precision engineering, 2016, 24(8): 1948-1955. DOI: 10.3788/OPE.20162408.1948.
研究了磷酸二氢钾(KDP)晶体飞切加工过程中温度场的分布,探索了切削温度对KDP晶体切削过程的影响。首先,采用热力耦合有限元分析对KDP晶体切削过程进行了仿真,获得了不同切削深度下材料内部温度场的分布。分别使用飞切机床和纳米压痕仪在不同速度下切削KDP晶体,发现不同切削速度下形成的切屑的微观形貌存在显著差异,分析指出这可能是由于在不同切削速度下切削区域温度差异导致的。最后,对低速加工过程中获得的切屑进行加热试验,并观测了不同温升条件下切屑微观形貌的变化。飞切加工仿真实验显示:当切深为200 nm时,切削区域的温度达到110 ℃;而实际实验结果表明:当温度超过100 ℃时,切屑的微观形貌会发生明显变化。综合仿真及实验结果可知:在KDP晶体飞切加工过程中切削区域的温度将超过100 ℃,因此在对KDP晶体切削机理进行研究时,必须考虑温度对材料力学性能及其去除过程的影响。
This paper researches the thermal field distribution of a Potassium Dihydrogen Phosphate (KDP) crystal in fly-cutting process
and explores the influence of cutting temperature on the fly-cutting process of KDP crystal. Firstly
the thermal-mechanical coupled Finite Element Method(FEM) was conducted to simulate the fly-cutting process of KDP crystal and to obtain the temperature fields under different cutting depths. Then
a fly-cutting machine and a nanoindentation instrument were used to cut the KDP crystal at different speeds. It was found that the microscopic morphologies of the chip formed under different cutting speeds are greatly different
and this may result from the different temperature rises at different cutting speeds. Finally
the chip formed under lower cutting speed was heated at different temperatures and the morphology of the heated chip was observed. The simulation results demonstrate that the temperature in the cutting zone rises to as much as 110 ℃ when the cutting depth increases to 200 nm. Moreover
the experiment results indicate that the chip morphology will change at 100 ℃. It concludes by simulation and experiments that the maximum temperature exceeds 100 ℃ in fly-cutting of KDP crystal. So
it suggests that the effect of cutting temperature on the mechanical property and removal process in fly-cutting of KDP crystal should be considered.
GUO D CH, JIANG X D, HUANG J, et al.. Effect of UV laser conditioning on the structure of KDP crystal [J]. Advances in Condensed Matter Physics, 2014, 7: 1-7.
CHEN M J, LI M Q, JIANG W, et al.. Influence of period and amplitude of microwaviness on KH2PO4 crystal's laser damage threshold [J]. Journal of Applied Physics, 2010.
KATAGIRI, NAMBA M Y. Optical surface generation of KDP inorganic nonlinear optical crystals by ultra precision surface grinding [J]. The Japan Society for Precision Engineer, 1999, 65: 888-892.
MENAPACE J A, EHRMANN P R, BICKEL R C. Magnetorheological finishing (MRF) of potassium dihydrogen phosphate (KDP) crystals: nonaqueous fluids development, optical finish, and laser damage performance at 1064 nm and 532 nm [C].
CHEN H F, DAI Y F, ZHENG Z W, et al.. Effect of crystallographic orientation on cutting forces and surface finish in ductile cutting of KDP crystals [J]. International Journal of Machining Science and Technology, 2011, 15 (2): 231-242.
张文生, 张飞虎, 董申. 光学脆性材料的金刚石切削加工[J]. 光学 精密工程, 2003, 11(2), 139-143.
ZHANG W S, ZHANG F H, DONG SH. Diamond cutting of optical brittle materials [J]. Opt. Precision Eng., 2003, 11(2), 139-143. (in Chinese)
PATURI U M R, NARALA S K R, PURDER R S. Constitutive flow stress formulation, model validation and FE cutting simulation for AA7075-T6 aluminum alloy [J]. Materials Science & Engineering A, 2014, 605: 176-185.
周明, 邹莱. 金刚石切削黑色金属时刀具磨损机理的摩擦磨损试验[J]. 光学 精密工程, 2013, 21(7): 1786-1794.
ZHOU M, ZOU L. Tool wear mechanism of diamond cutting of ferrous metals in frictional wear experiment [J]. Opt. Precision Eng., 2013, 21(7): 1786-1794.
ZHAO Q L, WANG Y L, YU G, et al.. Investigation of anisotropic mechanisms in ultra-precision diamond machining of KDP crystal [J]. Journal of Materials Processing Technology, 2009, 209: 4169-4177.
MYLVAGANAM K, ZHANG L, ZHANG Y. Stress-induced phase and structural changes in KDP crystals [J]. Computational Materials Science, 2015, 109: 359-366.
TIE G, DAI Y, GUAN C, et al.. Research on the full-aperture ductile cutting of KDP crystals using spiral turning technique [J]. Journal of Materials Processing Technology, 2013, 213 (12): 2137-2144.
LLANOS I, VILLAR J A, URRESTI I, et al.. Finite element modeling of oblique machining using an Arbitrary Lagrangian Eulerian formulation[J]. International Journal of Machining Science and Technology, 2013, 13: 385-406.
ZHANG Y, ZHANG L, LIU M, et al.. Understanding the friction and wear of KDP crystal by nanoscratching [J]. Wear, 2015, 332-333: 900-906.
汪圣飞, 安晨辉, 张飞虎, 等. 基于纳米划痕实验和有限元仿真的KDP晶体断裂性能研究[J]. 人工晶体学报, 2015, 44 (9): 1-5.
WANG SH F, AN CH H, ZHANG F H, et al.. Study on the fracture mechanism of KDP crystal by nanoscratch experiment and FE simulation [J]. Journal of Synthetic Crystals, 2015, 44 (9): 1-5. (in Chinese)
COURBON C, MABROUKI T, RECH J, et al.. Further insight into the chip formation of ferritic-pearlitic steels: Microstructural evolutions and associated thermo-mechanical loadings [J]. International Journal of Machine Tools & Manufacture, 2014, 77: 34-46.
0
浏览量
82
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构