浏览全部资源
扫码关注微信
宁波大学机械工程与力学学院, 浙江 宁波 315211
李国平(1967-),男,湖北武穴人,博士,教授,1990年、1993年于大连理工大学机械工程系分别获得学士学位,硕士学位,2010年于浙江大学机械工程系获得博士学位,现为宁波大学研究生院执行院长,主要从事精密定位及机电测控方面的研究。E-mail:liguoping@nbu.edu.cn E-mail:liguoping@nbu.edu.cn
[ "孙涛(1989-),男,安徽望江人,硕士研究生,主要从事精密加工方面的研究。E-mail:suntao_nbu@126.com" ]
收稿日期:2016-01-27,
录用日期:2016-3-4,
纸质出版日期:2016-08-25
移动端阅览
李国平, 孙涛, 邱辉, 等. 高频响伺服刀架的建模与控制[J]. Editorial Office of Optics and Precision Engineeri, 2016,24(8):1991-1999.
Guo-ping LI, Tao SUN, Hui QIU, et al. Model and control of high-frequency response servo tool[J]. Optics and precision engineering, 2016, 24(8): 1991-1999.
李国平, 孙涛, 邱辉, 等. 高频响伺服刀架的建模与控制[J]. Editorial Office of Optics and Precision Engineeri, 2016,24(8):1991-1999. DOI: 10.3788/OPE.20162408.1991.
Guo-ping LI, Tao SUN, Hui QIU, et al. Model and control of high-frequency response servo tool[J]. Optics and precision engineering, 2016, 24(8): 1991-1999. DOI: 10.3788/OPE.20162408.1991.
考虑目前应用压电陶瓷驱动器的伺服刀架只能提供单向驱动力,设计了一种基于双压电陶瓷驱动器的快速伺服刀架。涉及的两个压电陶瓷驱动器分别为刀具的进给和回复提供驱动力,其呈对称布置,用于有效提高刀架的整体刚度。为了对两个压电陶瓷驱动器进行联动协调控制,建立了PI迟滞模型和其逆模型,并设计了相应的联动协调控制方法。利用PI逆模型作为PID反馈控制的前馈环节构成复合控制用于调节快速伺服刀架的输出位移。实验验证了新型快速伺服刀架的响应频率、响应时间、位移响应特性和定位精度。结果显示:新型快速伺服刀架的响应频率为871.86 Hz,响应时间为0.000 45 s;三角波信号的最大定位误差为3.366 1
μ
m,误差百分数为7.63%,平均绝对误差为0.698 0
μ
m,误差百分数为1.58%;正弦波信号的最大定位误差为3.244 4
μ
m,误差百分数为7.67%,平均绝对误差为0.930 9
μ
m,误差百分数为2.20%。
As the fast servo tool based on piezoelectric actuators only provides one-way driving force
a new fast servo tool based on dual piezoelectric actuators was designed. The two piezoelectric actuators in the fast servo tool were used to provide driving forces for feeding and recovery of tools and they were symmetrically arranged for effectively enhancing the overall stiffness of the servo tool. To control the two piezoelectric actuators
a PI model of dual piezoelectric actuators and its inverse model were established
and corresponding linkage coordinate control method was presented. Then
the PI inverse model was used as a feed-forward segment of PID feed-back control to construct a composite control to adjust the output displacement of fast servo tool . Experimental results show that the response frequency of new fast servo tool is 871.86 Hz
and response time is 0.000 45 s. When the inputting signal is a triangular wave
the maximum positioning error is 3.366 1
μ
m and the average absolute error is 0.698 0
μ
m. When the inputting signal is a sine wave
the maximum positioning error is 3.244 4
μ
m and the average absolute error is 0.930 9
μ
m.
吴丹, 谢晓丹, 王先逵. 快速刀具伺服机构研究进展[J]. 中国机械工程, 2008, 19(11): 1379-1383.
WU D, XIE X D, WANG X K. Research review of fast tool servo[J]. China Mechanical Engineering, 2008, 19(11): 1379-1383.(in Chinese)
王晓慧, 孙涛. 快速伺服刀架迟滞特性的Preisach建模 [J]. 光学精密工程, 2009, 17(6): 1421-1425.
WANG X H, SUN T. Preisach modeling of hysteresis for fast tool servo system[J]. Opt. Precision Eng., 2009, 17(6): 1421-1425.(in Chinese)
KONG L B, CHEUNG C F, KWOK T C. Theoretical and experimental analysis of the effect of error motions on surface generation in fast tool servo machining[J]. Precision Engineering, 2014, 38(2): 428-438.
KOHLER J, SEIBEL A. FTS-baesd face milling of micro structures[J].Institute of Production Engineering and Machine Tools, 2015, 28: 58-63.
CHEN S L, HSIEH T H. Repetitive control design and implementation for linear motor machine tool[J]. International Journal of Machine Tools and Manufacture, 2007, 47(12-13): 1807-1816.
WU D, CHEN K. WANG X. Tracking control and active disturbance rejection with application to noncircular machining[J]. International Journal of Machine Tools and Manufacture, 2007, 47(15): 2207-2217.
LAW M, WABNER M, COLDITZ A, et al. Active vibration isolation of machine tools using an electro-hydraulic actuator [J]. Cirp Journal of Manufacturing Science & Technology, 2015, 10: 36-48.
ZHANG K, HU D J. An electromagnetic actuation based boring method for non-circular hole[J]. Journal of Shanghai Jiaotong University, 2005, 39(6): 845-848.
YANG Z S, HE Z B, LI D W, et al. Direct drive servo valve based on magnetostrictive actuator: Multi-coupled modeling and its compound control strategy[J]. Sensors and Actuators A: Physical, 2015, 235: 119-130.
LU H, LEE D W, KIM J M, et al. Modeling and machining evaluation of microstructure fabrication by fast tool servo-based diamond machining[J]. Precision Engineering, 2014, 38(1): 212-216.
WANG H F, YANG S Y. Design and control of a fast tool servo used in noncircular piston turning process[J]. Mechanical Systems and Signal Processing, 2013, 36(1): 87-94.
MA H Q, TIAN J, HU D J. Development of a fast tool servo in noncircular turning and its control[J]. Mechanical Systems and Signal Processing, 2013, 41(1-2): 705-713.
SOSNICKI O, PAGES A, PACHECO C, et al. Servo piezo tool SPT400MML for the fast and precise machining of free forms[J].Int J Adv Manuf Technol, 2010, 47(9-12): 903-910.
KIM H S, LEE K-II, LEE K M, et al. Fabrication of free-from surfaces using a long-stroke fast tool servo and corrective figuring with on-machine measurement[J]. International Journal of Machine Tools & Manufacture, 2009, 49(12-13): 991-997.
ZHU Z W, ZHOU X Q, LIU Z W, et al. Development of a piezoelectrically actuated two-degree-of-freedom fast tool servo with decoupled motions for micro-/nanomachining[J].Precision Engineering, 2014, 38(4): 809-820.
STEFAN R, CUTTINO J F. Design and testing of a long-range, precision fast tool servo system for diamond turning[J]. Precision Engineering, 2009, 33(1): 18-25.
赵清亮, 王义龙, 于光, 等. 基于快速伺服刀架技术的菲涅尔微结构金刚石超精密加工及其控制技术[J]. 机械工程学报, 2010, 46(9): 179-186.
ZHAO Q L, WANG Y L, YU G, et al. Fast tool servo-based ultra-precision diamond machining of fresnel micro-structured surface and its control technology[J]. Journal of Mechanical Engineering, 2010, 46(9): 179-186.(in Chinese)
LIU L, TAN K K, CHEN S L, et al. SVD-based preisach hysteresis identification and composite control of piezo actuators[J].ISA Transactions, 2012, 51(3): 430-438.
SU C Y, WANG Q Q, CHEN X K, et al. Adaptive variable structure control of class of nonlinear systerms with unknown Prandtl-Ishlinskii hystersis [J]. IEEE Trans. Automatic Control, 2005, 50(12): 2069-2074.
YING Z G, ZHU W Q. Stochastic averaging of duhem hysteretic systems[J].Journal of Sound and Vibration , 2002, 254(1): 91-104.
杨斌堂, 赵寅, 彭志科, 等. 基于Prandtl-Ishlinskii 模型的超磁致伸缩驱动器实时磁滞补偿控制[J]. 光学精密工程, 2013, 21(1): 127-128.
YANG B T, ZHAO Y, PENG ZH K, et al. Real-time compensation control of hysteresis based on Prandtl-Ishlinskii operator for GMA[J]. Opt. Precision Eng., 2013, 21(1): 127-128.(in Chinese)
KLAUS K. Modeling, identification and compensation of complex hysteretic nonlinearities: a nodified Prandtl-Ishlinskii approach[J]. European Journal of Control, 2003, 9: 407-418.
0
浏览量
324
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构