浏览全部资源
扫码关注微信
西南科技大学 信息工程学院, 四川 绵阳 621000
[ "吴斌(1965-),男,四川大竹人,教授,博士生导师,1985年于中南大学获得学士学位,1993年、1999年于北京科技大学分别获得硕士、博士学位,主要从事经济智能控制、图像处理等方面的研究。E-mail:wubin@swust.edu.cn" ]
付辉(1991-),女,山西阳泉人,硕士研究生,主要从事图像处理、DSP的研究。E-mail:1285110730@qq.com E-mail:1285110730@qq.com
收稿日期:2016-03-22,
录用日期:2016-5-23,
纸质出版日期:2016-08-25
移动端阅览
吴斌, 付辉, 张红英. 大气光幂雾图像的清晰度复原[J]. Editorial Office of Optics and Precision Engineeri, 2016,24(8):2018-2026.
Bin WU, Hui FU, Hong-ying ZHANG. De-hazing of atmosphere veil haze images[J]. Optics and precision engineering, 2016, 24(8): 2018-2026.
吴斌, 付辉, 张红英. 大气光幂雾图像的清晰度复原[J]. Editorial Office of Optics and Precision Engineeri, 2016,24(8):2018-2026. DOI: 10.3788/OPE.20162408.2018.
Bin WU, Hui FU, Hong-ying ZHANG. De-hazing of atmosphere veil haze images[J]. Optics and precision engineering, 2016, 24(8): 2018-2026. DOI: 10.3788/OPE.20162408.2018.
针对现有图像去雾方法处理效率低,天空部分处理效果欠佳以及去雾图像视觉效果不理想等问题,提出了一种快速大气光幂去雾算法。提出的算法是对全球环境光值和大气光幂值求取方法的改进。首先,采用高斯低通滤波求取雾气图像低频区,应用循环四分图算法在低频区得到全球环境光值A;其次,采用暗原色优先算法获取初始大气光幂值,结合自适应各向异性高斯滤波处理大气光幂;最后,采用色调调整增强图像细节,使图像逼近于无雾场景。实验结果表明,本文算法能消减图像景深突变处的晕轮效应,亮度、对比度和细节信息处理效果较好,不仅较完整地保留了边缘细节,而且显著提升了处理效率,同时具有较高的鲁棒性和实时性。
A fast atmosphere veil de-hazing method was proposed to overcome the shortcomings of existing de-hazing methods in lower process efficiency
poorer treatment result of sky part and a bad visual effect for images. The method focuses on the improvements for global atmospheric light values and the acquiring method of atmospheric veil values. Firstly
the Gaussian low-pass filter method was used to gain a low frequency area of an image
and the circle quarter figure algorithm was used to obtain the global atmospheric light value of the low frequency area. Then
the dark channel prior algorithm was employed to achieve the initial atmospheric veil value and the atmospheric veil was processed by the adaptive anisotropic Gaussian filter. Finally
image details were enhanced by utilizing tone mapping
by which the image could approximate to the no fog scene image. The experimental results show that the proposed method restricts the halo effect of depth mutation area in the image and well processes lightness
contrast and detail information for the image. It keeps edge details of the image perfectly
improves the image processing efficiency and has good robustness and real-time ability.
NARASIMHAN S G, NAYAR S K. Chromatic framework for vision in bad weather[C].IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Hilton Head, SC, USA, 2000: 598-695.
陈志斌, 张超, 宋岩, 等. 灰度拉伸Retinex在大动态范围烟雾图像增强中的应用[J]. 红外与激光工程, 2014, 43(9): 3146-3150.
CHEN ZH B, ZHANG CH, SONG Y, et al.. Application of Retinex with grayscale stretching in large dynamic range smoke image enhancement[J]. Infrared and Laser Engineering, 2014, 43(9): 3146-3150. (in Chinese)
LAND E H, MECCANN J. Lightness and Retinex theory [J]. J Opt Soc Amer, 1971, 61(1): 1-11.
JOBSON D J, RAHMAN Z U, WOODELL G A. Properties and performance of a center/surround Retinex [J].IEEE Transactions on Image Processing, 1997, 6(3): 451-462.
赵宏宇, 肖创柏, 禹晶, 等. 马尔科夫随机场模型下的Retinex夜间彩色图像增强[J]. 光学精密工程, 2014, 22(4): 1048-1055.
ZHAO H Y, XIAO CH B, YU J, et al.. A Retinex algorithm for night color image enhancement by MFR[J]. Opt. Precision Eng., 2014, 22 (4): 1048-1055. (in Chinese)
刘雪超, 吴志勇, 王弟男, 等. 结合自适应窗口的二维直方图图像增强[J]. 红外与激光工程, 2014, 43(6): 2027-2035.
LIU X CH, WU ZH Y, WANG D N, et al.. Image enhancement by two-dimensional histogram with self-adaptive window[J].Infrared and Laser Engineering, 2014, 43 (6): 2027-2035. (in Chinese)
HE K M, SUN J A, TANG X O. Single image haze removal using dark channel prior[C].CVPR: 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, Florida, USA, 2009: 1956-1963.
刘言, 张红英, 吴亚东. 基于半逆法的一种快速单幅图像去雾算法[J]. 图学学报, 2015, 36(1): 68-76.
LIU Y, ZHANG H Y, WU Y D. A fast single image de-hazing using the improved semi-inverse approach[J]. Journal of Graphics, 2015, 36(1): 68-76. (in Chinese)
TAREL J P, HAUTIERE N. Fast visibility restoration from a single color or gray level image[C].2009 IEEE 12 th International Conference on Computer Vision(ICCV), Xi'an, China, 2009: 2201-2208.
尤政, 杨冉, 张高飞, 等. 激光测距系统整形模块和低通滤波模块优化设计[J]. 光学精密工程, 2013, 21(10): 2527-2535.
YOU ZH, YANG R, ZHANG G F, et al.. Optimization of shaping circuit and low-pass filter in laser ranging system[J]. Opt. Precision Eng., 2013, 21(10): 2527-2535.(in Chinese)
王广君, 田金文, 刘健. 基于四叉树结构的图像分割技术[J]. 红外与激光工程, 2001, 30(1): 12-14.
WANG G J, TIAN J W, LIU J. Image segmentation based on the structure of quadtree [J]. Infrared and Laser Engineering, 2001, 30(1): 12-14. (in Chinese)
KIN J H, TANG W D, SIM J Y, et al.. Optimized contrast enhancement for real-time image and video de-hazing [J]. Journal of Visual Communication and Image Representation, 2013, 24(3): 410-425.
何舒文, 王延杰, 孙宏海, 等. 基于DMD的高动态范围场景成像技术[J]. 光子学报, 2015, 44(8): 01-1-6.
HE SH W, WANG Y J, SUN H H, et al.. High dynamic range imaging based on DMD[J].Acta Photonica Sinica, 2015, 44(8): 01-1-6 .(in Chinese)
刘海波, 杨杰, 吴正平, 等. 基于区间估计的单幅图像快速去雾[J]. 电子与信息学报, 2016, 33(2): 381-385.
LIU H B, YANG J, WU ZH P, et al.. Fast single image dehazing based on interval estimation[J]. Journal of Electronics & Information Technology, 2016, 33(2): 381-385.(in Chinese)
王卫星, 肖翔, 陈良琴, 等. 结合最小滤波和引导滤波的暗原色去雾[J]. 光学精密工程, 2015, 23(7): 2100-2108.
WANG W X, XIAO X, CHEN L Q, et al.. Image dark channel prior haze removal based on minimum filtering and guided filtering[J]. Opt. Precision Eng., 2015, 23(7): 2100-2108. (in Chinese)
高绍姝, 金伟其, 王延江, 等. 灰度融合图像目标与背景感知对比度客观评价模型[J]. 红外与激光工程, 2015, 44(5): 1660-1665.
GAO SH SH, JIN W Q, WANG Y J, et al.. Target-background perceptual contrast metric for gray fusion images [J]. Infrared and Laser Engineering, 2015, 44(5): 1660-1665. (in Chinese)
0
浏览量
569
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构