浏览全部资源
扫码关注微信
1.中国科学院 长春光学精密机械与物理研究所激光与物质相互作用国家重点实验室, 吉林 长春 130033
2.中国科学院大学, 北京 100049
[ "方楚(1990-), 男, 内蒙古赤峰人, 博士研究生, 2012年于上海交通大学获得学士学位, 主要从事光学精密仪器的设计与研究。E-mail:cfang1990@hotmail.com" ]
郭劲(1964-), 男, 吉林长春人, 博士, 研究员, 博士生导师, 2007年于中科院长春光机所获得博士学位, 主要从事激光与物质相互作用技术研究。E-mail:guojin1964@126.com GUO Jin, E-mail: guojin1964@126.com
收稿日期:2015-12-07,
录用日期:2016-2-3,
纸质出版日期:2016-09
移动端阅览
方楚, 郭劲, 徐新行, 等. 压电陶瓷迟滞非线性前馈补偿器[J]. 光学精密工程, 2016,24(9):2217-2223.
Chu FANG, Jin GUO, Xin-xing XU, et al. Compensating controller for hysteresis nonlinerity of piezoelectric ceramics[J]. Optics and precision engineering, 2016, 24(9): 2217-2223.
方楚, 郭劲, 徐新行, 等. 压电陶瓷迟滞非线性前馈补偿器[J]. 光学精密工程, 2016,24(9):2217-2223. DOI: 10.3788/OPE.20162409.2217.
Chu FANG, Jin GUO, Xin-xing XU, et al. Compensating controller for hysteresis nonlinerity of piezoelectric ceramics[J]. Optics and precision engineering, 2016, 24(9): 2217-2223. DOI: 10.3788/OPE.20162409.2217.
为了有效补偿压电陶瓷的迟滞非线性,提出了基于STOP算子的改进PI模型以改善传统基于PLAY算子的PI模型解析求逆的复杂过程以及通过插值算法求逆的大量耗时。介绍了传统的基于PLAY算子和基于STOP算子的PI模型,然后基于STOP算子的叠加形式建立了以预期位移为输入,以控制电压为输出的PI模型,并将这一模型直接作为前馈控制器补偿压电陶瓷的迟滞效应。为了更好地平衡全局寻优与局部寻优能力,对粒子群优化算法进行了改进,利用其辨识出各算子的权值。最后,利用实验的方法验证了改进的PI模型对迟滞非线性的补偿效果。进行了两组实验测试,结果显示:无论对于规律变化还是随机变化的输入,提出的改进PI模型都可以很好补偿迟滞非线性,跟踪误差可控制在1%以内。因此,基于STOP算子的改进PI模型在压电陶瓷控制领域中具有很好的实用价值。
To effectively compensate the hysteresis nonlinearity of piezoelectric ceramics
a modified PI model based on STOP operator was proposed to avoid the complex processing in solving inverse model and time consuming in interpolating method of the traditional PI model based on PLAY operator. Firstly
traditional PI models based on PLAY operator or STOP operator were introduced. Then
modified PI model based on STOP operator was established by taking an expecting displacement as the input and a control voltage as the output
and the model was used as a feedback controller to compensate the hysteresis effect of piezoelectric ceramics. To balance the ability of local optimization and global optimization
the particle swarm optimization algorithm was improved to identify the weights of operators with different thresholds. Finally
the modified PI model was used to verify experimentally the compensating effects for the hysteresis nonlinearity. Two groups of experiments were carried out
and the results show that the hysteresis has been compensated well by modified PI model with the error no more than 1% no matter the input is continuous or random. It concludes that
the modified PI model based on STOP operator is of great value in the field of piezoelectric ceramic control.
LI W, CHEN X D. Compensation of hysteresis in piezoelectric actuators without dynamics modeling[J]. Sensors and Actuators A:Physical, 2013, 199:89-97.
YANG G, WANG D H, LI SH D. Single piezoelectric ceramic stack actuator based fast steering mirror with fixed rotation axis and large excursion angle[J].Sensors and Actuators A:Physical, 2015, 235:292-299.
ZHU W, BIAN L X, AN Y, et al.. Modeling and control of a two-axis fast steering mirror with piezoelectric stack actuators for laser beam tracking[J]. Smart Structure and Materials, 2015, 24:075014.
QI K Q, YANG X, CHAO F, et al.. Analysis of the displacement amplification ratio of bridge-type mechanism[J].Mechanism and Machine Theory, 2015, 87:45-56.
崔玉国, 朱耀祥, 娄军强, 等.压电微夹持钳钳指位移与夹持力的检测[J].光学精密工程, 2015, 23(5):1372-1379.
CUI Y G, ZHU Y X, LOU J Q, et al.. Detection of finger displacement and gripping force of piezoelectric micro-gripper[J].Opt. Precision Eng., 2015, 23(5):1372-1379.(in Chinese)
RU CH H, CHEN L G, SHAO B, et al.. A hysteresis compensation method of piezoelectric actuator:Model, identification and control[J]. Control Engineering Practice, 2009, 17:1107-1114.
ZIRKA S E, MOROZ Y I, MARKETOS P, et al..Dynamic hysteresis modeling[J]. Science Direct:Physica B, 2004, 343:90-95.
GAUL L, BECKER J. Model-based piezoelectric hysteresis and creep compensation for highly-dynamic feedforward rest-to-rest motion control of piezoelectrically actuated flexible structures[J]. International Journal of Engineering Science, 2009, 47:1193-1207.
XIAO SH L, LI Y M. Dynamic compensation and H∞ control for piezoelectric actuators based on the inverse Bouc-Wen model[J]. Robotics and Computer-Integrated Manufacturing, 2014, 30:47-54.
袁刚, 张小波, 王代华, 等.压电式快速反射镜的迟滞特性及线性化[J].光学精密工程, 2015, 23(6):1650-1656.
YUANG G, ZHANG X B, WANG D H, et al..Hysteresis and linearization of piezoelectric fast steering mirror[J].Opt. Precision Eng., 2015, 23(6):1650-1656.(in Chinese)
BAHADUR I M, MILLS J K. A new model of hysteresis of piezoelectric actuators[C]. Proceedings of the 2011 IEEE International Conference on Mechatronics and Automation. August 7-10, Beijing, China.
MACHI J W, NISTRI P, ZECCA P. Mathematical models for hysteresis[J]. SIAW Review. 35(1993)94-123.
MARTIN B. Some mathematical properties of the preisach model for hysteresis[J]. Transcations on Magnetics. 25(4)1989.
LIU S N, SU CH Y. A modified generalized Prandtl-Ishlinskii model and its inverse for hysteresis compensation[C]. 2013 American Control Conference, Washington, 2013:17-19.
吴伊玲, 刘廷霞, 张振东, 等.基于PI迟滞模型的压电陶瓷复合控制算法研究[J].压电与声光, 2015, 37(6):950-953.
WU Y L, LIU T X, ZHANG ZH D, et al.. Research on compound control arithmetic ofpiezoelectric ceramic based on PI model[J]. Piezoelectrics & Acoustooptics, 2015, 37(6):950-953.(in Chinese)
JANAIDEH M A, RAKHEJA S, SU CH Y. Experimental characterization and modeling of rate-dependent hysteresis of a piezoceramic actuator[J]. Mechatronics, 2009, 10:656-670.
BASU M. Modified particle swarm optimization for nonconvex economic dispatch problems[J]. Electrical Power and Energy Systems, 2015, 69:304-312.
MU A, CAO D, WANG X H. A modified particle swarm optimization algorithm[J]. Natural Science, 2009, 2(1):151-155.
YANG M J, GU G Y, ZHU L M. Parameter identification of the generalized Prandtl-Ishlinskii model for piezoelectric actuators using modified particle swarm optimization[J]. Sensors and Actuators A:Physics, 2013, 189:254-265.
0
浏览量
638
下载量
9
CSCD
关联资源
相关文章
相关作者
相关机构