浏览全部资源
扫码关注微信
1.厦门大学 航空航天学院, 福建 厦门 361005
2.华南理工大学 发光材料与器件国家重点实验室, 广东 广州 510000
[ "赵扬(1980-), 男, 辽宁丹东人, 助理教授, 2009年于吉林大学获工学博士学位, 主要从事智能精密制造和智能材料应用等领域研究。E-mail:zhaoy@xmu.edu.cn" ]
郑高峰(1984-), 男, 福建泉州人, 博士, 副教授, 2006年于武汉科技大学获学士学位|2011年于厦门大学获博士学位。主要从事静电纺丝技术和有机微纳米系统制造领域的研究。E-mail:zheng_gf@xmu.edu.cn ZHENG Gao-feng, E-mail: zheng_gf@xmu.edu.cn
收稿日期:2016-02-03,
录用日期:2016-3-15,
纸质出版日期:2016-09
移动端阅览
赵扬, 姜佳昕, 张恺, 等. 基于电纺直写的图案化微纳结构喷印技术[J]. 光学精密工程, 2016,24(9):2224-2231.
Yang ZHAO, Jia-xin JIANG, Kai ZHANG, et al. Precision deposition of micro/nano pattern printed by electrohydrodynamic direct-write[J]. Optics and precision engineering, 2016, 24(9): 2224-2231.
赵扬, 姜佳昕, 张恺, 等. 基于电纺直写的图案化微纳结构喷印技术[J]. 光学精密工程, 2016,24(9):2224-2231. DOI: 10.3788/OPE.20162409.2224.
Yang ZHAO, Jia-xin JIANG, Kai ZHANG, et al. Precision deposition of micro/nano pattern printed by electrohydrodynamic direct-write[J]. Optics and precision engineering, 2016, 24(9): 2224-2231. DOI: 10.3788/OPE.20162409.2224.
研究了利用电纺直写技术进行图案化微纳结构可控喷印沉积的方法,该方法利用喷头与收集板之间的稳定直线射流来实现有序纳米纤维的直写制造。分析了电纺直写射流在静止收集板和移动收集板上的沉积行为;探究了工艺参数对电纺直写微纳结构定位误差的影响规律。实验显示:在内部应力和电荷排斥力的作用下,射流会产生弯曲螺旋从而引导纳米纤维在静止收集板上逐层叠加形成三维微结构;提高收集板运动速度可克服射流螺旋鞭动,获得无螺旋结构的直线纳米纤维。根据设计图形分别电纺直写了方波、多圈矩形纳米纤维图案,分析了直写图案尺寸与设计图案尺寸间的误差。结果显示:电纺直写纤维图案定位误差随着收集板运动速度、喷头至收集板距离、施加电压、收集板运动距离的升高而增加;优化实验条件和试验参数,电纺直写微纳结构定位误差可优于10
μ
m。实验验证了微纳结构图案的精确喷印沉积有助于提高电纺直写技术的控制水平。
The precision deposition of micro/nano patterns printed by Electrohydrodynamic Direct Writing (EDW) technology was explored and the EDW for orderly nanofibers was implemented by the straight stable jet between a spinneret and a collector. The deposition behaviors of EDW jet on stationary and moving substrates were investigated. The effects of process parameters on the position errors of EDW patters were also studied. The experiments show that the jet is bended into a spiral structure by the inner stress and charge repulse force
and then the nanofiber is guided to form a three-dimensional fibrous microstructure on the stationary substrate. By increasing the velocity of collector
the bending process of charged jet can be overcome and the straight line nanofiber without spiral coil is direct-written on the substrate. The multi rectangle wave and square wave nanofibrous patterns are direct-written according to the designed pattern
respectively
and the dimension error between the direct-written nanofibrous pattern and designed pattern is also analyzed. The results indicates that the position error of direct-written nanofibrous pattern increases with increasing the velocity of collector
the distance between spinneret and collector
applied voltage
and the motion distance of collector. Moreover
by optimizing the experimental conditions and design parameters
the position error of direct-written fibrous pattern can be less than 10
μ
m. It concludes that the precision deposition of micro/nano pattern is benefit to promoting the control level of EDW technology.
PERSANO L, CAMPOSEO A, TEKMEN C, et al.. Industrial upscaling of electrospinning and applications of polymer nanofibers:a review[J]. Macromol. Mater. Eng., 2013, 298(5):504-520.
MIAO J, MIYAUCHI M, SIMMONS T J, et al.. Electrospinning of nanomaterials and applications in electronic components and devices[J]. J. Nanosci. Nanotechno., 2010, 10(9):5507-5519.
赵扬, 姜佳昕, 陈冬阳, 等.气辅式多射流纳米颗粒高效静电雾化喷射[J].光学精密工程, 2015, 23(4):1062-1069.
ZHAO Y, JIANG J X, CHEN D Y, et al.. High efficiency multi-jet electrospraying of nano particles with assisted gas[J]. Opt. Precision Eng., 2015, 23(4):1062-1069.(in Chinese)
于永泽, 刘媛媛, 陈伟华, 等.溶剂挥发对静电纺丝纳米纤维支架直径与沉积的影响[J].光学精密工程, 2014, 22(2):420-425.
YU Y Z, LIU Y Y, CHEN W H, et al.. Effect of solvent evaporation on diameter and deposition of nanofibrous scaffold in electrospinning[J]. Opt. Precision Eng., 2014, 22(2):420-425.(in Chinese)
RAMAKRISHNA S, JOSE R, ARCHANA P S, et al.. Science and engineering of electrospun nanofibers for advances in clean energy, water filtration, and regenerative medicine[J]. J. Mater. Sci., 2010, 45(23):6283-6312.
PU J A, YAN X J, JIANG Y D, et al.. Piezoelectric actuation of direct-write electrospun fibers[J]. Sensor. Actuat. A:Phys., 2010, 164(1):131-136.
CHANG C E, TRAN V H, WANG J B, et al.. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency[J]. Nano Lett., 2010, 10(2):726-731.
郑高峰, 何广奇, 刘海燕, 等.电纺氧化锌纳米纤维乙醇、丙酮气敏传感器[J].光学精密工程, 2014, 22(6):1555-1561.
ZHENG G F, HE G Q, LIU H Y, et al.. Electrospun zinc oxide nanofibrous gas sensors for alcohol and acetone[J]. Opt. Precision Eng., 2014, 22(6):1555-1561.(in Chinese)
CHUANGCHOTE S, SUPAPHOL P. Fabrication of aligned poly(vinyl alcohol) nanofibers by electrospinning[J]. J. Nanosci. Nanotechno., 2006, 6(1):125-129.
YANG J P, ZENG Y C, PEI Z G, et al.. Effect of perturbation on the whipping motion in electrospinning[J]. J.Appl. Polym. Sci., 2010, 115(4):2508-2513.
RENEKER D H, YARIN A L, FONG H, et al.. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning[J]. J. Appl. Phys., 2000, 87(9):4531-4547.
YUDISTIRA H T, VU D N, SI B Q, et al.. Retreat behavior of a charged droplet for electrohydrodynamic inkjet printing[J]. Appl. Phys. Lett., 2011, 98(8):083501.
LEI T P, LU X Z, YANG F. Fabrication of various micro/nano structures by modified near-field electrospinning[J]. AIP Adv., 2015, 5(4):041301.
SUN D H, CHANG C, LI S, et al.. Near-field electrospinning[J]. Nano Lett., 2006, 6(4):839-842.
ZHENG G F, LI W W, WANG X, et al.. Precision deposition of a nanofibre by near-field electrospinning[J]. J. Phys. D Appl. Phys., 2010, 43(41):415501.
郑高峰, 王凌云, 孙道恒.基于近场静电纺丝的微/纳米结构直写技术[J].纳米技术与精密工程, 2008, 6(1):20-23.
ZHENG G F, WANG L Y, SUN D H. Micro/Nano-Structuredirect-Write technology based on near-field electrospinning[J]. Nanotechno. Precision Eng., 2008, 1:20-23.(in Chinese)
HE J, XU F, CAO Y, et al.. Electrohydrodynamic direct-writing lithography:An alternative maskless technique for microstructure fabrication[J]. Appl. Phys. Lett., 2014, 105(25):253109.
李文望, 郑高峰, 王翔, 等.电纺直写纳米纤维在图案化基底的定位沉积[J].光学精密工程, 2010, 18(10):2231-2238.
LI W W, ZHENG G F, WANG X, et al.. Position deposition of electrospinning direct-writing nanofiber on pattern substrate[J]. Opt. Precision Eng., 2010, 18(10):2231-2238.(in Chinese)
孙凡, 王沧, 施陈飞, 等.电纺PANI/PEO纳米纤维传感器制备与应用[J].传感器与微系统, 2015, 34(8):121-123.
SUN F, WANG C, SHI CH F, et al.. Preparation and application of PANI/PEO nanofiber sensor based on electrospinning[J]. Transducer and Microsystem Technologies, 2015, 34(8):121-123.(in Chinese)
ZHENG G F, SUN L L, WANG X, et al.. Electrohydrodynamic direct-writing microfiber patterns under stretching[J]. Appl. Phys. A:Mater., 2016, 122(2):112.
ZHENG G F, YU Z J, ZHUANG M F, et al.. Electrohydrodynamic direct-writing of three-dimensional multi-loop nanofibrous coils[J]. Appl. Phys. A-Mater., 2014, 116(1):171-177.
李文望, 孙道恒.空间电场对单根纳米纤维沉积的影响分析[J].华侨大学学报(自然科学版), 2009, 30(5):502-505.
LI W W, SUN D H. Effect of electrical field on the single nanofiber deposition[J]. J. Huaqiao Univ.(Natural Science), 2009, 30(5):502-505.(in Chinese)
LIN Z M, YAO B, YE J J, et al.. The study of automatic programming system for near-field electrospinning Direct Write[J]. Adv. Mater. Res., 2011, 197:3-7.
0
浏览量
504
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构