浏览全部资源
扫码关注微信
清华大学 精密仪器系, 北京 100084
陈志勇(1973-), 男, 河北石家庄人, 博士, 副研究员。1996年、2001年于清华大学分别获得学士、博士学位, 主要从事微机电惯性器件方面的研究。E-mail:chendelta@tsinghua.edu.cn CHEN Zhi-yong, E-mail: chendelta@tsinghua.edu.cn
[ "刘悦琛(1990-), 女, 天津人, 硕士研究生。2013年于清华大学获得学士学位, 主要从事微机电惯性器件方面研究。E-mail:1098553453@qq.com" ]
收稿日期:2016-04-12,
录用日期:2016-5-17,
纸质出版日期:2016-09
移动端阅览
陈志勇, 刘悦琛, 张嵘, 等. 微机电陀螺耦合刚度的辨识[J]. 光学精密工程, 2016,24(9):2240-2247.
Zhi-yong* CHEN, Yue-chen LIU, Rong ZHANG, et al. Identification of coupling stiffness for MEMS gyroscope[J]. Optics and precision engineering, 2016, 24(9): 2240-2247.
陈志勇, 刘悦琛, 张嵘, 等. 微机电陀螺耦合刚度的辨识[J]. 光学精密工程, 2016,24(9):2240-2247. DOI: 10.3788/OPE.20162409.2240.
Zhi-yong* CHEN, Yue-chen LIU, Rong ZHANG, et al. Identification of coupling stiffness for MEMS gyroscope[J]. Optics and precision engineering, 2016, 24(9): 2240-2247. DOI: 10.3788/OPE.20162409.2240.
针对微机电陀螺耦合刚度的辨识,提出了以驱动轴、检测轴、驱动-转动耦合和驱动-检测耦合频率响应特性为基础的耦合刚度辨识方法。设计了一种驱动轴和检测轴双向位移解耦的双质量线振动微机电陀螺,基于经过简化的梁的刚度特性建立了微陀螺平面运动动力学方程,导出了结构在存在耦合刚度情况下驱动轴、检测轴、驱动-转动耦合和驱动-检测耦合的传递函数。根据耦合传递函数把刚度耦合产生的根源定位到特定的几组梁之间的刚度误差。通过驱动-转动耦合与驱动轴幅频特性之比辨识出驱动-转动耦合刚度系数,通过驱动-检测耦合与检测轴幅频特性之比辨识出转动-检测耦合刚度系数。实验测试了设计加工的微陀螺的频率响应特性,利用提出的耦合刚度辨识方法得到陀螺的驱动-转动和转动-检测耦合刚度系数分别为0.14 N和0.054 33 N。得到的耦合刚度的辨识结果可为微陀螺梁刚度的激光修调提供参数依据。
For identification of the coupling stiffness of MEMS (Micro-electro-mechanical System) gyroscopes
a identification method was proposed based on the frequency response characteristics of the drive-axis
sense axis
drive-to-rotation coupling and rotation-to-sense coupling. A dual-mass linear vibrating MEMS gyroscope with decoupled drive-to-sense and sense-to-drive displacement was designed. Based on simplified stiffness characteristics of the beams
the dynamic planar movement equations of the gyroscope were established and the drive-axis
sense-axis
drive-to-rotation and drive-to-sense transfer functions were derived. According to the coupling model
the sources of stiffness coupling were attributed to the stiffness error of specific beams. The drive-to-rotation coupling stiffness could be identified by the ratio of drive-to-rotation coupling to drive-axis frequency responses
and rotation-to-sense coupling stiffness could be identified by the ratio of drive-to-sense to sense-axis frequency responses. The frequency responses of the gyroscope were investigated by the proposed coupling stiffness identification method
and results show that coupling stiffness coefficients by drive-to-rotation and rotation-to-sense for the tested gyroscope are 0.14 N and 0.054 33 N
respectively. It concludes that the identification results provide references for laser trimming of the beams for gyroscopes.
赵阳, 裘安萍, 施芹, 等.硅微陀螺仪零偏稳定性的优化[J].光学精密工程, 2014, 22(9):2381-2388.
ZHAO Y, QIU A P, SHI Q, et al.. Optimization of bias stability for silicon microgyroscope[J]. Opt. Precision Eng., 2014, 22(9):2381-2388. (in Chinese)
陈志勇, 张嵘, 周斌.一种低机械噪声弱耦合的微机电陀螺敏感结构[J].中国惯性技术学报, 2015, 23(3):373-378.
CHEN ZH Y, ZHANG R, ZHOU B. MEMS gyroscope structure with low mechanical-thermal noise and weak mechanical coupling[J]. Journal of Chinese Inertial Technology, 2015, 23(3):373-378. (in Chinese)
XIE J B, YUAN W ZH, CHANG H L. Design and fabrication of MEMS gyroscopes on the silicon-on-insulator substrate with decoupled oscillation modes[J]. Chinese Journal of Mechanical Engineering, 2010, 23(1):16-20.
SONMEZOGLU S, TAHERI-TEHRANI P, VALZASINA C, et al.. Single-Structure Micromachined Three-Axis Gyroscope With Reduced Drive-Force Coupling[J]. Electron Device Letters, IEEE, 2015, 36(9):953-956.
DING H T, LIU X S, LIN L T, et al.. A high-resolution silicon-on-glass axis gyroscope operating at atmospheric pressure[J]. Sensors Journal, IEEE, 2010, 10(6):1066-1074.
周浩, 苏伟, 刘显学, 等.解耦Z轴微机械陀螺的研制[J].光学精密工程, 2011, 19(9):2123-2130.
ZHOU H, SU W, LIU X X, et al.. Development of decoupled z-axis micromachined gyroscope[J]. Opt. Precision Eng., 2011, 19(9):2123-2130. (in Chinese)
姜劭栋, 裘安萍, 施芹, 等.硅微陀螺仪正交耦合系数的计算及验证[J].光学精密工程, 2013, 21(1):87-93.
JIANG SH D, QIU A P, SHI Q, et al.. Calculation and verification of quadrature coupling coefficients of silicon microgyroscope[J]. Opt. Precision Eng., 2013, 21(1):87-93. (in Chinese)
孙香政, 王刚, 郭志想, 等.耦合结构对音叉式陀螺振动特性的影响[J].传感技术学报, 2013, 26(12):1695-1699.
SUN X ZH, WANG G, GUO ZH X, et al.. Influence of coupled mechanism on vibration characteristics of tuning fork gyroscope[J]. Chinese Journal of Sensors and Actuators, 2013, 26(12):1695-1699.(in Chinese)
贺琨, 崔红娟, 侯占强, 等.微机械振动陀螺模态耦合误差分析与激光修形方法研究[J].传感器与微系统, 2013, 32(3):21-24.
HE K, CUI H J, HOU ZH Q, et al.. Study on modal coupling error analysis and laser trimming method for micromachining vibration gyroscope[J]. Transducer and Microsystem Technologies, 2013, 32(3):21-24. (in Chinese)
倪云舫, 李宏生, 杨波, 等.硅微陀螺正交误差直流校正设计与分析[J].中国惯性技术学报, 2014, 22(1):104-108.
NI Y F, LI H SH, YANG B, et al.. Design and analysis of a quadrature correction method using DC voltages for silicon micro-gyroscope[J]. Journal of Chinese Inertial Technology, 2014, 22(1):104-108. (in Chinese)
SU JB, XIAO D B, WU X ZH, et al.. Improvement of bias stability for a micromachined gyroscope based on dynamic electrical balancing of coupling stiffness[J]. J. Micro/Nanolith. MEMS MOEMS., 2013, 12(3):033008.
CAO H L, LI H SH, KOU ZH W, et al.. Optimization and experimentation of dual-mass MEMS gyroscope quadrature error correction methods[J]. Sensors, 2016, 16(1):71.
0
浏览量
510
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构