浏览全部资源
扫码关注微信
军械工程学院2系, 河北 石家庄 050003
[ "王春平(1965-), 男, 陕西汉中人, 教授, 博士生导师, 主要从事图像处理、火力控制理论与应用方面的研究。E-mail:wchp17@139.com" ]
王暐(1989-), 男, 甘肃靖远人, 博士研究生, 2010年于北京航空航天大学获得学士学位, 主要从事计算机视觉、嵌入式系统设计方面的研究。E-mail: wang_wei.buaa@163.com WANG Wei, wang_wei.buaa@163.com
收稿日期:2016-05-13,
录用日期:2016-7-12,
纸质出版日期:2016-09
移动端阅览
王春平, 王暐, 刘江义, 等. 基于色度饱和度-角度梯度直方图特征的尺度自适应核相关滤波跟踪[J]. 光学精密工程, 2016,24(9):2293-2301.
Chun-ping WANG, Wei WANG, Jiang-yi LIU, et al. Scale adaptive kernelized correlation filter tracking based on HHS-OG feature[J]. Optics and precision engineering, 2016, 24(9): 2293-2301.
王春平, 王暐, 刘江义, 等. 基于色度饱和度-角度梯度直方图特征的尺度自适应核相关滤波跟踪[J]. 光学精密工程, 2016,24(9):2293-2301. DOI: 10.3788/OPE.20162409.2293.
Chun-ping WANG, Wei WANG, Jiang-yi LIU, et al. Scale adaptive kernelized correlation filter tracking based on HHS-OG feature[J]. Optics and precision engineering, 2016, 24(9): 2293-2301. DOI: 10.3788/OPE.20162409.2293.
针对核相关跟踪算法(KCF)对特征敏感及无法跟踪尺度的问题,本文从特征提取和尺度自适应两个方面对核相关滤波跟踪算法进行了研究。提出了一种基于色度饱和度-角度梯度直方图特征的自适应核相关跟踪算法来改善KCF算法的跟踪性能。首先,研究了HSI颜色空间的特点,基于颜色和梯度是互补的图像特征,提出了一种融合了梯度和颜色的HHS-OG特征来有效提高原始KCF算法对目标和背景的判别力。其次,针对KCF无法处理目标尺度变化的问题,在跟踪的检测阶段采用一组固定的尺度因子进行图像块采样,根据得到的滤波响应图估计目标的最优位置和尺度。将所提算法在大量视频序列上进行了跟踪实验,结果显示其平均跟踪速度为37.5 frame/s,跟踪精度和成功率分别提升了5.4%和10.1%。实验表明HHS-OG特征具有良好的目标-背景判别能力,能够实现鲁棒跟踪,而尺度自适应策略能较大程度地提高跟踪精度。
Since Kernelized Correlation Filters (KCF)tracking algorithm is sensitive to feature selecting and unable to estimate object scale
this paper researches the KCF tracking algorithm based on feature extraction and scale adapting. A scale adaptive KCF tracker by using HHS-OG (Histogram of Hue Saturation and Oriented Gradient
HHS-OG) feature was proposed to improve the tracking performance of the KCF tracker. Firstly
the HSI color space was studied. By taking the complementary of color and gradient in an image
a novel HHS-OG feature focused color and gradient features was proposed to improve the discrimination ability of the KCF algorithm to backgrounds and targets. As the KCF algorithm is unable to process the changed scale
a set of scale factors were used to sample image patches in the detection stage of tracking and the generated corresponding filter response maps were used to estimate the optimal target position and scale. The proposed tracker was tested on a large tracking benchmarks with 50 video sequences. Experimental results show that the tracker runs at a high speed of 37.5 frame per second and has a significantly improvement of 5.4% in representative precision score and 10.1% representative success score. The HHS-OG feature has good discrimination ability for backgrounds and targets and has robustness for target tracking. The scale adaptive strategy is effective for improving tracking performance.
WU Y, LIM J, YANG M H. Online object tracking:a benchmark[C]. IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013:1354-1362.
JOAO H, RUI C, PEDRO M, et al..High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 32(9):1627-1645.
BOMLE D S, LUI Y M, DRAPER B A, et al.. Simple real-time human detection using a single correlation filter[C]. IEEE International Workshop on Performance Evaluation of Tracking & Surveillance, Snowbird, UT, 2009:1-8.
BOMLE D S, BEVERIDGE J R, DRAPER B A, et al..Visual object tracking using adaptive correlation filters[C]. IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010:2544-2550.
JOAO H, RUI C, PEDRO M, et al..Exploiting the circulant structure of tracking-by-detection with kernels[C]. European Conference on Computer Vision, Florence, Italy, 2012:702-715.
MARTIN D, GUSTAV H, FAHAD S K, et al..Learning spatially regularized correlation filters for visual tracking[C]. International Conference on Computer Vision, Santiago, Chile, 2015:4310-4318.
TANGM, FENG J. Multi-kernel correlation filter for visual tracking[C]. International Conference on Computer Vision, Santiago, Chile, 2015:3038-3046.
MARTIN D, FAHAD S K, MICHAEL F, et al..Adaptive color attributes for real-time visual tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014:1090-1097.
MA C, HUANG J B, YANG X K, et al..Hierarchical convolutional features for visual tracking[C]. International Conference on Computer Vision, Santiago, Chile, 2015:3038-3046.
PEDRO F, ROSS G, DAVID M, et al..Object detection with discriminatively trained part based models[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2010, 32(9):1627-1645.
ZHANG B, EBEID S M, PREVOSTR, et al..Fast solver for some computational imaging problems:a regularized weighted least-squares approach[J]. Digital Signal Processing, 2014, 27:107-118.
张雷, 王延杰, 孙宏海, 等.采用核相关滤波器的自适应尺度目标跟踪[J].光学精密工程, 2016, 24(2):448-459.
ZHANG L, WANG Y J, SUN H H, et al..Adaptive scale object tracking with kernelized correlation filters[J]. Opt. Precision Eng., 2016, 24(2):448-459. (in Chinese)
宋策, 张葆, 尹传历.适于机载环境对地目标跟踪的粒子滤波设计[J].光学精密工程, 2014, 22(4):1037-1047.
SONG C, ZHAGN B, YIN CH L. Particle filter design for tracking ground targets in airborne environment[J]. Opt. Precision Eng., 2014, 22(4):1037-1047. (in Chinese)
BERNHARD S, ALEXANDER S. Learning with Kernels:Support Vector Machines, Regularization, Optimization, and Beyond[M]. Massachusetts, the MIT Press, 2002:184-209.
DALAL N, BILL T. Histograms of oriented gradients for human detection[C]. IEEE Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005:886-893.
JIANG Y S, MA J W. Combination features and models for human detection[C].IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015:240-248.
SAM H, AMIR S, PHILIP H. Struck:Structured output tracking with kernels[C]. International Conference on Computer Vision, Barcelona, Spain, 2011:263-270.
THANG B, NAM V, GERARD G M. Context tracker:exploring supporters and distracters in unconstrained environments[C].IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, USA, 2011:1177-1184.
BORIS B, YANG M H, SERGE J B.Visual tracking with online multiple instance learning[C].IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009:983-990.
0
浏览量
249
下载量
14
CSCD
关联资源
相关文章
相关作者
相关机构