浏览全部资源
扫码关注微信
1.天津工业大学 电气工程与自动化学院, 天津 300387
2.天津大学 电子信息工程学院, 天津 300072
朱新军(1985-), 男, 山东临沂人, 博士, 讲师, 2008年于临沂大学获得学士学位, 2011年于山东理工大学获得硕士学位, 2015年于天津大学获得博士学位, 现为天津工业大学电气工程与自动化学院讲师, 主要从事光干涉测量、散斑测量及机器视觉的研究。E-mail:xinjunzhu@tjpu.edu.cn ZHU Xin-jun, E-mail:xinjunzhu@tjpu.edu.cn
[ "邓耀辉(1993-), 男, 河北石家庄人, 硕士研究生, 2015年于河北工业大学获得学士学位, 主要从事三维重建、机器视觉、模式识别等领域的研究。E-mail:18202511970@163.com" ]
收稿日期:2016-06-05,
录用日期:2016-8-1,
纸质出版日期:2016-09
移动端阅览
朱新军, 邓耀辉, 唐晨, 等. 条纹投影三维形貌测量的变分模态分解相位提取[J]. 光学精密工程, 2016,24(9):2318-2324.
Xin-jun ZHU, Yao-hui DENG, Chen TANG, et al. Variational mode decomposition for phase retrieval in fringe projection 3D shape measurement[J]. Optics and precision engineering, 2016, 24(9): 2318-2324.
朱新军, 邓耀辉, 唐晨, 等. 条纹投影三维形貌测量的变分模态分解相位提取[J]. 光学精密工程, 2016,24(9):2318-2324. DOI: 10.3788/OPE.20162409.2318.
Xin-jun ZHU, Yao-hui DENG, Chen TANG, et al. Variational mode decomposition for phase retrieval in fringe projection 3D shape measurement[J]. Optics and precision engineering, 2016, 24(9): 2318-2324. DOI: 10.3788/OPE.20162409.2318.
针对条纹投影三维形貌测量涉及的相位提取,提出了一种基于变分模态分解的单幅条纹投影相位提取方法。通过建立变分模态分解模型和极小化变分模态分解将单幅投影条纹图分解成背景部分、条纹部分和噪声部分。然后对得到条纹部分进行Hilbert变换和反正切变换得到包裹相位;对其进行质量导向相位解包裹和Zernike多项式去载频得到解包裹相位。将该方法与Fourier变换、连续小波变换进行了对比,结果显示:本文提出的相位提取方法相位误差为3.14×10
-4
,小于Fourier变换和连续小波变换方法对应的误差3.30×10
-4
和6.52×10
-4
。模拟和实验结果表明:本文提出的方法在处理具有边缘信息投影条纹图时具有优势,能够提取出更准确的相位信息,可有效地用于含边缘不连续和突起的三维物体测量。
For the phase retrieval in fringe projection 3D shape measurements
a new fringe projection phase retrieval method based on variational mode decomposition was proposed. Firstly
the projection fringe pattern was decomposed into a background part
a fringe part and a noise part by the development of variational mode decomposition model and the minimization of the model. Then
the fringe part was processed by Hilbert and arc tangent transform to obtain a wrapping phase
and by quality guided phase unwrapping and Zernike carrier removal to acquire the final absolute phase. Simulation and experimental results show that the phase error by the proposed method is 3.14×10
-4
smaller than the errors 3.30×10
-4
and 6.52×10
-4
that respectively obtained by Fourier transform method and continuous wavelet transform method. The proposed method is superior to the Fourier transform method and continuous wavelet transform method in the process of projection fringes with edge information
providing more accurate results
and is more effective for the application of the three dimensional measurement of objects with discontinuous and abrupt changes.
GORTHI S S, RASTOGI P. Fringe projection techniques:Whither we are?[J]. Opt. Lasers Eng., 2010, 48(2):133-140.
DAI M L, YANG F J, HE X Y. Single-shot color fringe projection for three-dimensional shape measurement of objects with discontinuities[J]. Appl. Opt., 2012, 51(12):2062-2069.
张鹏, 张元, 金光, 等.应用条纹投影法测量薄膜反射镜的成形[J].光学精密工程, 2011, 19(6):1185-1191
ZHANG P, ZHANG Y, JIN G, et al.. Measurement of space membrane mirror shaping based on fringe projection[J]. Opt. Precision Eng., 2011, 19(6):1185-1191. (in Chinese)
安东, 陈李, 丁一飞, 等.光栅投影相位法系统模型及标定方法[J].中国光学, 2015, 8(2):248-254
AN D, CHEN L, DING Y F, et al.. Optical system model and calibration of grating projection phase method[J]. Chinese Optics, 2015, 8(2):248-254. (in Chinese)
张旭, 李祥, 屠大维.相位高度的显函数模型及其标定[J].光学精密工程, 2015, 23(8):2384-2392
ZHANG X, LI X, TU D W. Explicit phase height model and its calibration[J]. Opt. Precision Eng., 2015, 23(8):2384-2392. (in Chinese)
戴美玲, 杨福俊, 何小元.基于双频彩色光栅投影测量不连续物体三维形貌[J].光学精密工程, 2013, 21(1):7-12
DAI M L, YANG F J, HE X Y. Three-dimensional shape measurement of objects with discontinuities by dual-frequency color fringe projection[J]. Opt. Precision Eng., 2013, 21(1):7-12. (in Chinese)
武迎春, 曹益平, 肖焱山.任意相移最小二乘法迭代的在线三维检测[J].光学精密工程, 2014, 22(5):1347-1353
WU Y CH, CAO Y P, XIAO Y SH. On-line three-dimensional inspection using randomly phase-shifting fringe based on least-square iteration[J]. Opt. Precision Eng., 2014, 22(5):1347-1353. (in Chinese)
ZHOU X, PODOLEANU A, YANG Z Q, et al.. Morphological operation-based bi-dimensional empirical mode decomposition for automatic background removal of fringe patterns[J]. Opt. Express, 2012, 20(22):24247-24262.
GUTIÉRREZ-GARCÍA J C, MOSIÑO J F, MARTÍNEZ A, et al.. Practical eight-frame algorithms for fringe projection profilometry[J]. Opt. Express, 2013, 21(1):903-917.
TAKEDA M, MUTOH K. Fourier transform profilometry for the automatic measurement of 3-D object shapes[J]. Appl Opt, 1983, 22(24):3977-3982.
MA J, WANG Z, VO M, PAN B. Wavelet selection in two-dimensional continuous wavelet transform technique for optical fringe pattern analysis[J]. Journal of Optical, 2012, 14(6):065403.
ZHENG S, CAO Y. Fringe-projection profilometry based on two-dimensional empirical mode decomposition[J]. Appl. Opt., 2013, 52(31):7648-7653.
ZHU X, CHEN Z, TANG C. Variational image decomposition for automatic background and noise removal of fringe patterns[J]. Opt. Lett., 2013, 38(3):275-277.
ZHU X J, TANG C CH, LI B, et al.. Phase retrieval from single frame projection fringe pattern with variational image decomposition[J].Opt. Lasers Eng., 2014, 59:25-33.
DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3):531-544.
GHIGLIA D C, PRITT M D. Two-dimensional Phase Unwrapping:Theory, Algorithm, and Software[M]. New York:Wiley, 1998.
ZHANG Q, WU Z. A carrier removal method in Fourier transform profilometry with Zernike polynomials[J]. Opt. Lasers Eng., 2013, 51(3):253-260.
0
浏览量
582
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构