浏览全部资源
扫码关注微信
1.大连理工大学 辽宁省微纳米技术及系统工程重点实验室, 辽宁 大连 116024
2.大连理工大学 精密与特种加工教育部重点实验室, 辽宁 大连 116024
[ "李聪明(1985-),男,山西运城人,博士研究生,2009年、2013年于大连交通大学分别获得学士、硕士学位。主要研究方向为精密仪器及机械。E-mail:lcm123lcm525@163.com" ]
王晓东(1967-),男,黑龙江哈尔滨人,教授,博士生导师,1989年于南京航空学院获学士学位,1992年于哈尔滨船舶工程学院获硕士学位,1995年于哈尔滨工业大学获博士学位。主要从事微装配技术与系统、精密仪器设计与制造等方面的研究。E-mail:xdwang@dlut.edu.cn
收稿日期:2016-05-10,
录用日期:2016-6-20,
纸质出版日期:2016-10
移动端阅览
李聪明, 罗怡, 周传鹏, 等. 微热管红外测温系统的设计[J]. 光学 精密工程, 2016,24(10):2449-2455.
Cong-ming LI, Yi LUO, Chuan-peng ZHOU, et al. Design of infrared temperature measurement system for micro heat pipe[J]. Optics and precision engineering, 2016, 24(10): 2449-2455.
李聪明, 罗怡, 周传鹏, 等. 微热管红外测温系统的设计[J]. 光学 精密工程, 2016,24(10):2449-2455. DOI: 10.3788/OPE.20162410.2449.
Cong-ming LI, Yi LUO, Chuan-peng ZHOU, et al. Design of infrared temperature measurement system for micro heat pipe[J]. Optics and precision engineering, 2016, 24(10): 2449-2455. DOI: 10.3788/OPE.20162410.2449.
根据集成发光二极管(LED)的微热管尺寸小、温升快、温度梯度变化剧烈等特点,搭建了非接触式红外测温系统,以实现对其不同特征区域的温度测量。对该系统的信号采集与转换、误差分析与补偿、测温特性指标、以及微热管的热性能进行了研究。该系统通过LabVIEW编程软件实现红外传感器的电信号采集与温度转换;将不同温度的加热块作为等温体参考,对比热电偶与红外测温结果完成静态和动态测温特性分析,进而通过环境温度补偿方法修正LED辐射热引起的传感器漂移误差;最后基于线性拟合法完成传感器的校准。利用该测试系统在不同热负载下测试了微热管的热性能。结果显示:测温系统的准确度、重复性及线性度分别为1.2~1.5℃、1%和0.2%;时间常数
T
和响应时间
t
0.05
分别约为15 ms和30 ms。该红外非接触测温系统能够减小传感元件对被测温度场的影响,具有测温精度高和热惰性小的特点,为微热管热性能评估提供了新的测量方法。
According to the characteristics of Micro Heat Pipe(MHP) in an integrated Light Emitting Diode (LED) on small sizes
fast temperature rising and temperature change
as well temperature gradient
a non-contact infrared temperature measurement system was conducted to measure the temperature of different feature regions of th MHP integrated with LED chips. The signal acquisition and conversion
error analysis and compensation
characteristic indexes of temperature measuring and heat performance experiments of the MHP were investigated. Electrical signal acquisition and temperature conversion were implemented through LabVIEW programming. Then
the heating blocks with different temperatures were considered as isothermal reference bodies
and the measuring results of the infrared sensors and the thermocouples were compared and analyzed for static and dynamic temperature measurement characteristics. The drift error resulting from LED radiant heat was corrected by environment temperature compensation
and infrared sensors were calibrated by linear fitting. Finally
the heat performance of MHP under different heat loads were measured by proposed measuring system. Experimental results indicate that the accuracy
repeatability and the linearity of the system are 1.2-1.5℃
1% and 0.2%
respectively
while the time constant and the response time are 15 ms and 30 ms
respectively. The Infrared measuring reduces the effects of sensor elements on temperature distribution of feature areas
and is characterized by high temperature measurement precision and small thermal inertia. It provides a new measuring method for the evaluation of heat performance of MHPs.
NGUYEN T T T, KUNDAN A, WAYNER P C, et al.. The effect of an ideal fluid mixture on the evaporator performance of a heat pipe in microgravity[J]. International Journal of Heat and Mass Transfer, 2016, 95:1129-1129.
ALMSATER S, SAMAN W, BRUNO, F. Performance enhancement of high temperature latent heat thermal storage systems using heat pipes with and without fins for concentrating solar thermal power plants[J]. Renewable Energy, 2016, 89:36-50.
NIKOLAYEV V S. Effect of tube heat conduction on the single branch pulsating heat pipe start-up[J]. International Journal of Heat and Mass Transfer, 2016, 95:477-487.
LI X B, LI M J, LI M, et al.. Forming method of micro heat pipe with compound structure of sintered wick on grooved substrate[J]. Heat and Mass Transfer, 2016, 52(3):581-593.
CALAUTIT J K, O'CONNOR D, HUGHES B R. A natural ventilation wind tower with heat pipe heat recovery for cold climates[J]. Renewable Energy, 2016, 87:1088-1104.
陈思员,李鹏飞,薛志虎,等. 航天十一院热管军民两用技术的最新进展[J]. 军民两用技术与产品,2014,05:56-58.
CHEN S Y, LI P F, XUE ZH H, et al.. Recent Progress of CAAA heat pipes for military-civil application[J]. Dual Use Technologies & Products, 2014, 05:56-58. (in Chinese)
崔可航,辛公明,程林,等. 环路热管毛细芯有效导热系数的实验研究[J]. 工程热物理学报,2010,31(9):1543-1546.
CUI K H, XIN G M, CHENG L, et al.. Effective thermal conductivity of loop heat pipe wicks[J]. Journal of Engineering Thermophysics, 2010,31(9):1543-1546. (in Chinese)
勾昱君.大功率LED热管散热器传热强化研究[D]. 北京:北京工业大学,2014. http://cdmd.cnki.com.cn/article/cdmd-10005-1015006408.htm
GOU Y J. An Investigation on Heat Transfer Augmentation of Large Power LED Heat Pipe Radiators[D].Beijing:Beijing University of Technology,2014. (in Chinese)
于洋. 温度测量方法选择策略[J]. 装备制造技术,2015,9:79-81.
YU Y. Temperature measurement method selection strategy[J]. Equipment Manufacturing Technology, 2015,9:79-81. (in Chinese)
杨明,王建设. 热环境试验中的温度测量及数据处理软件[J]. 光学 精密工程,2000,8(6):544-546.
YANG M, WANG J SH. Software of temperature-measuring and data-processing in thermal environment experiment[J].Opt. Precision Eng., 2000,8(6):544-546. (in Chinese)
李云红,孙晓刚,原桂彬. 红外热像仪精确测温技术[J]. 光学 精密工程,2007,15(9):1336-1341.
LI Y H, SUN X G, YUAN G B. Accurate measuring temperature with infrared thermal imager[J].Opt. Precision Eng., 2007,15(9):1336-1341. (in Chinese)
君毅. 红外非接触式温度测量[J]. 激光与红外,1978, 03:22-29.
JUN Y. Non-contact temperature measuring with infrared[J].Laser & Infrared,1978,03:22-29. (in Chinese)
鲁祥友,华泽钊,刘美静,等. 基于热管散热的大功率LED热特性测量与分析[J]. 光电子激光,2009,20(1):5-8.
LU X Y, HUA Z ZH, LIU M J, et al..Measurement and snalysis on yhermal vharacteristics of high power LED based on heat pipe[J]. Journal of Optoelectronics.Laser, 2009,20(1):5-8. (in Chinese)
余莉,韩玉,曹业玲,等. 电子设备散热用平板式热管的实验研究[J]. 南京航空航天大学学报,2008,40(5):627-631.
YU L, HAN Y, CAN Y L, et al.. Experimental investigation on flat-plate heat pipe in cooling electronic equipment[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2008,40(5):627-631. (in Chinese)
HSIEH J C, HUANG H J, SHEN S C. Experimental study of micro rectangular groove structure covered with multi mesh layers on performance of flat plate heat pipe for LED lighting module[J]. Microelectronics Reliability, 2012,52(6):1071-1079.
DEDE E M. Optimization and design of a multipass branching microchannel heat sink for electronics cooling[J]. Journal of Electronic Packaging, 2012, 134(4):041001-1-10.
WANG P, MCCLUSKEY P, BAR-COHEN A. Two-phase liquid cooling for thermal management of IGBT power electronic module[J]. Journal of Electronic Packaging, 2013, 135(2):021001-1-11.
0
浏览量
455
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构