浏览全部资源
扫码关注微信
合肥工业大学 仪器科学与光电工程学院, 安徽 合肥 230009
苗恩铭(1970-),男,安徽阜阳人,博士生导师、教授,2004年于合肥工业大学获得博士学位,主要研究方向为精密机械工程、精度理论、数控机床热误差补偿、机械热鲁棒性结构设计理论与应用技术。E-mail:miaoem@163.com
[ "刘义(1994-),男,安徽淮北人,硕士研究生,2014年于合肥工业大学获得学士学位,主要从事数控机床热误差补偿技术研究、机械形体热变形规律研究。E-mail:liuyi8045@163.com" ]
收稿日期:2016-05-07,
录用日期:2016-6-10,
纸质出版日期:2016-10
移动端阅览
苗恩铭, 刘义, 董云飞, 等. 数控机床热误差时间序列模型预测稳健性的提升[J]. 光学 精密工程, 2016,24(10):2480-2489.
En-ming MIAO, Yi LIU, Yun-fei DONG, et al. Improvement of forecasting robustness of time series model for thermal error on CNC machine tool[J]. Optics and precision engineering, 2016, 24(10): 2480-2489.
苗恩铭, 刘义, 董云飞, 等. 数控机床热误差时间序列模型预测稳健性的提升[J]. 光学 精密工程, 2016,24(10):2480-2489. DOI: 10.3788/OPE.20162410.2480.
En-ming MIAO, Yi LIU, Yun-fei DONG, et al. Improvement of forecasting robustness of time series model for thermal error on CNC machine tool[J]. Optics and precision engineering, 2016, 24(10): 2480-2489. DOI: 10.3788/OPE.20162410.2480.
针对数控机床热误差建模应用的时间序列算法受严重多重共线性的影响存在预测稳健性不足的问题,提出一种提升时间序列预测稳健性的方法。该方法将时间序列算法与能够抑制多重共线性的建模算法相结合,从而既可通过在模型中加入温度滞后值来提供更全面的温度信息,又可对温度滞后值引入的更为严重的多重共线性进行处理。文中以时间序列算法中的分布滞后(DL)算法、共线性抑制算法中的主成分回归(PCR)算法为例,采用主成分分布滞后(PCDL)算法建立了机床热误差补偿模型,并将其与DL算法的预测精度和稳健性进行了比较。结果显示,PCDL算法因为抑制了多重共线性的影响,其模型预测精度和稳健性远优于DL模型,预测精度提升了约9
μ
m。本文所述方法可为时间序列数据建模在不同领域内的应用提供参考。
When the time series algorithm is used to establish a thermal error compensation model for a Computer Numerical Controlled (CNC) Machine
it shows a shortcoming of forecasting robustness caused by the severe multiple collinearity. This paper proposes a method for improving the forecasting robustness of the time series algorithm. This algorithm combines the time series algorithm with the modeling algorithms which are able to suppress multiple collinearity. Thus
it not only provides more comprehensive temperature information by adding the temperature lag values in the thermal error model
but also deals with the severe multiple collinearity brought by the added temperature lag values. The Distribution Lag (DL) algorithm that belongs to time series algorithms and Principal Component Regression (PCR) algorithm that can suppress the multiple collinearity are selected as the examples
and a modeling method for establishing the thermal error compensation model of the machine tool is proposed by the Principal Component Distribution Lag (PCDL) algorithm. The forecasting accuracy and robustness of PCDL algorithm are compared with that of DL algorithm. The results show that the PCDL algorithm suppress the impact of multiple collinearity
so
its model's forecasting accuracy and robustness are far better than that of DL model
and the forecasting accuracy is improved about 9
μ
m. The proposed method provides a good reference for the application of time series data modeling in different fields.
BRYAN J B. International status of thermal error research[J]. CIRP Annals-Manufacturing Technology, 1990, 39(2):645-656.
ARONSON R B. War against thermal expansion[J]. Manufacturing Engineering, 1996, 116(6):45-50.
YANG J G, YUAN J X, NI J. Thermal error mode analysis and robust modeling for error compensation on a CNC turning center[J]. International Journal of Machine Tools & Manufacture, 1999, 39(9):1367-1381.
MIAO E M, GONG Y Y, NIU P C, et al.. Robustness of thermal error compensation modeling models of CNC machine tools[J]. International Journal of Manufacturing Technology, 2013, 69(9):2593-2603.
姚焕新, 牛鹏程, 苗恩铭,等. 数控机床热误差补偿中分布滞后模型的建立[J]. 农业机械学报, 2013, 44(3):246-250.
YAO H X, NIU P CH, MIAO E M, et al.. Establishment of autoregressive distributed lag model in thermal error compensation of CNC machine tools[J]. Transactions of The Chinese Society of Agricultural Machinery, 2013, 44(3):246-250. (in Chinese)
苗恩铭, 龚亚运, 牛鹏程,等. 自回归分布滞后模型在数控机床热误差建模中的应用[J]. 计量学报, 2013, 34(3).
MIAO E M, GONG Y Y, NIU P CH, et al.. Application of autoregressive distributed lag model to thermal error compensation of machine tools[J]. Acta Metrologica Sinica, 2013, 34(3). (in Chinese)
李永祥, 童恒超, 曹洪涛,等. 数控机床热误差的时序分析法建模及其应用[J]. 四川大学学报:工程科学版, 2006, 38(2):74-78.
LI Y X, TONG H CH, CAO H T, et al.. Application of time series analysis to thermal error modeling on NC machine tools[J]. Journal of Sichuan University:Engineering Science Edition, 2006, 38(2):74-78. (in Chinese)
张琨, 姚晓栋, 张毅,等. 基于时序模型优化选择的热误差建模[J]. 组合机床与自动化加工技术, 2011(10):36-39.
ZHANG K, YAO X D, ZHANG Y, et al.. Thermal error modeling based on optimum selection of time series models[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2011(10):36-39. (in Chinese)
王振龙, 胡永宏.应用时间序列分析[M]. 北京:科学出版社,2007.
WANG ZH L, HU Y H. Application of Time Series Analysis[M]. Beijing:Science Press,2007. (in Chinese)
吕程, 刘子云, 刘子建,等. 广义径向基函数神经网络在热误差建模中的应用[J]. 光学 精密工程, 2015, 23(6):1705-1713.
LV CH, LIU Z Y, LIU Z J, et al.. Application of generalized radial basis function neural network to thermal error modeling[J]. Opt. Precision Eng., 2015, 23(6):1705-1713. (in Chinese)
李鸣鸣, 龚振邦, 孙麟治,等. 实验数据RBF神经网络模型中噪声的处理方法[J]. 光学 精密工程, 2005, 13(z1):227-231.
LI M M, GONG ZH B, SUN L ZH, et al.. Strategies to the noise contained in experimental data in RBF neural network model[J]. Opt. Precision Eng., 2005, 13(z1):227-231. (in Chinese)
于俊年.计量经济学[M]. 北京:对外经济贸易大学出版社, 2000.
YU J N. Econometrics[M]. Beijing:University of International Business and Economics Press, 2000. (in Chinese)
曾九孙, 刘祥官, 罗世华,等. 主成分回归和偏最小二乘法在高炉冶炼中的应用[J]. 浙江大学学报:理学版, 2009, 36(1):33-36.
ZENG J S, LIU X G, LUO SH H, et al.. Application of principle component regression and partial least square in blast furnace iron-making[J]. Journal of Zhejiang University:Science Edition, 2009, 36(1):33-36. (in Chinese)
史志伟, 韩敏. ESN岭回归学习算法及混沌时间序列预测[J]. 控制与决策, 2007, 22(3):258-261.
SHI ZH W, HAN M. Ridge regression learning in ESN for chaotic time series prediction[J]. Control and Decision, 2007, 22(3):258-261. (in Chinese)
范金梅, 许黎明, 赵晓明,等. 机床热误差补偿中温度传感器布置策略的研究[J]. 仪器仪表学报, 2005, 26(S1):83-84.
FAN J M, XU L M, ZHAO X M, et al.. Sensor placement strategy for thermal error compensation on machine tools[J]. Chinese Journal of Scientific Instrument, 2005, 26(S1):83-84. (in Chinese)
LO C, YUAN J X,NI J. Optimal temperature variable selection by grouping approach for thermal error modeling and compensation[J]. International Journal of Machine Tools & Manufacture, 1999, 39(99):1383-1396.
LEE J, YANG S. Statistical optimization and assessment of a thermal error model for CNC machine tools[J]. International Journal of Machine Tools & Manufacture, 2002, 42(1):147-155.
杨建国, 邓卫国, 任永强,等. 机床热补偿中温度变量分组优化建模[J]. 中国机械工程, 2004, 15(6):478-481.
YANG J G, DENG W G, REN Y Q, et al.. Grouping optimization modeling by selection of temperature variables for the thermal error compensation on machine tools[J]. China Mechanical Engineering, 2004, 15(6):478-48. (in Chinese)
苗恩铭, 龚亚运, 成天驹, 等. 支持向量回归机在数控加工中心热误差建模中的应用[J]. 光学 精密工程, 2013, 21(4):980-986.
MIAO E M, GONG Y Y, CHENG T J, et al.. Application of support vector regression to thermal Error modeling of machine tools[J]. Opt. Precision Eng., 2013, 21(4):980-986. (in Chinese)
苗恩铭, 刘义, 高增汉,等. 数控机床温度敏感点变动性及其影响[J]. 中国机械工程, 2016(3).
MIAO E M, LIU Y, GAO Z H, et al.. Variability of temperature-sensitive points and Its influences for CNC machines tools[J]. China Mechanical Engineering, 2016(3):285-289. (in Chinese)
0
浏览量
968
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构