浏览全部资源
扫码关注微信
福州大学 物理与信息工程学院, 福建 福州 350108
廖一鹏(1982-),男,福建泉州人,博士研究生,讲师,2005年、2008年于福州大学分别获得学士、硕士学位,主要从事图像处理与模式识别方面的研究。E-mail:fzu_lyp@163.com
[ "王卫星(1959-),男,湖南邵阳人,博士,教授,博士生导师,1982年和1985年分别在国内获得学士学位和工程硕士学位,1997年于瑞典皇家工学院获得博士学位,主要从事图像处理与模式识别、机器视觉应用等方面的研究。E-mail:znn525d@qq.com" ]
收稿日期:2016-05-13,
录用日期:2016-6-22,
纸质出版日期:2016-10
移动端阅览
廖一鹏, 王卫星. 结合多尺度边缘增强及自适应谷底检测的浮选气泡图像分割[J]. 光学 精密工程, 2016,24(10):2589-2600.
Yi-peng LIAO, Wei-xing WANG. Flotation froth image segmentation based on multiscale edge enhancement and adaptive valley detection[J]. Optics and precision engineering, 2016, 24(10): 2589-2600.
廖一鹏, 王卫星. 结合多尺度边缘增强及自适应谷底检测的浮选气泡图像分割[J]. 光学 精密工程, 2016,24(10):2589-2600. DOI: 10.3788/OPE.20162410.2589.
Yi-peng LIAO, Wei-xing WANG. Flotation froth image segmentation based on multiscale edge enhancement and adaptive valley detection[J]. Optics and precision engineering, 2016, 24(10): 2589-2600. DOI: 10.3788/OPE.20162410.2589.
针对浮选气泡图像噪声大、边界弱、传统谷底检测算法对不同类型气泡分割不具普遍性等问题,提出了一种结合Contourlet多尺度边缘增强及自适应谷底边界检测的气泡分割方法。该方法通过对气泡图像进行Contourlet分解,得到多尺度多方向高频子带;通过对各方向子带的高频系数进行非线性增益处理,实现边缘增强和噪声抑制。对和声搜索算法的“调音”策略和参数设定方法进行了改进,对不同类型气泡图像自适应地获取谷底边界检测算法的最优参数,提取谷底并进行形态学的边缘完善处理。最后进行了分割实验,并与其它方法做了比较。结果表明,采用该方法对不同类型气泡进行分割时,平均检测效率(DER)和准确率(ACR)分别为91.2%和90.6%,较传统分割方法有较大提高。该方法无需手工调节参数,自适应能力强,精度高。
To overcome the weak edges and large noise of flotation froth image
and to solve the weakness of traditional valley detection algorithm on different kinds of bubble segmentation sizes
a froth image segmentation method was proposed based on Contourlet transform multi-scale edge enhancement and adaptive valley detection. Firstly
the froth image was decomposed by using the Contourlet transfom to obtain multi-scale and multi-direction sub-band coefficients. Then
thresholds of the nonlinear enhancement function were determined according to the coefficients of each scale to enhance edges and suppress the noise. Furthermore
the optimal position adjustment strategy and parameter setting of HS were improved to find the optimal parameters of valley detection algorithm and to detect the different kinds edges of bubble image size. Finally
segmentation experiment was performed and obtained result was further improved by morphological processing. Experiments show that the proposed method effectively detects the edges of different type of bubbles adaptively
and the average detection efficiency (DER) is 91.2% and the average accuracy (ACR) is 90.6%
which is much better than that of traditional methods. This method has high precision
good adaptive ability
and does not need to adjust parameters manually.
BERGH L G,YIANATOS J B.The long way toward multivariate predictive control of flotation processes[J].Journal of Process Control,2011,21(2s):226-234.
SAMEER H M,MARTIN C H,DEE J B.The use of machine vision to predict flotation performance[J]. Minerals Engineering,2012,10(36-38):31-36.
SAMEER H M,DEE J B, MARTIN C H.The use of the froth surface lamellae burst rate as a flotation froth stability measurement[J].Minerals Engineering,2012,36(10):152-159.
XU C H,GUI W H,YANG C H,et al..Flotation process fault detection using output PDF of bubble size distribution[J].Minerals Engineering,2012,26:5-12.
CHEN X F,GUI W H,YANG C H,et al.. Adaptive image processing for bubbles in flotation process[J]. Measurement & Control,2011,44(4):121-125.
周开军,桂卫华,阳春华,等. 基于模糊三值模式的矿物浮选泡沫图像边缘检测方法[J]. 电子学报, 2014, 42(4):658-664.
ZHOU K J,GUI W H,YANG CH H, et al..Mineral floatation froth image edge detection method based on fuzzy ternary pattern[J]. Acta Electronica Sinica, 2014, 42(4):658-664. (in Chinese)
WANG W, BERGHOLM F, YANG B. Froth delineation based on image classification[J]. Minerals Engineering, 2003, 16(11):1183-1192.
王卫星,李泳毅,陈良琴. 基于谷点边界扫描及区域合并的浮选气泡提取[J]. 中国矿业大学学报,2013,42(6):1061-1065.
WANG W X,LI Y Y,CHEN L Q.Bubble delineation on valley edge detection and region merge[J].Journal of China University of Mining & Technology,2013,42(6):1061-1065.(in Chinese)
王卫星,吴林春. 基于分数阶积分谷底边界检测的路面裂缝提取[J]. 华南理工大学学报(自然科学版),2014,42(1),117-122.
WANG W X,WU L CH.Extraction of pavement cracks based on valley edge detection of fractional integral[J]. Journal of South China University of Technology(Natural Science Edition),2014,42(1),117-122.(in Chinese)
任志英,高诚辉,申丁,等. 双树复小波稳健滤波在工程表面粗糙度评定中的应用[J]. 光学 精密工程,2014,22(7):1820-1827.
REN ZH Y,GAO CH H,SHEN D, et al.. Application of DT-CWT robust filtering to evaluation of engineering surface roughnes[J].Opt. Precision Eng., 2014,22(7):1820-1827. (in Chinese)
李俊山,张士杰,杨亚威,等. 基于边缘分离的去振铃复原[J]. 光学 精密工程,2014,22(3):797-805.
LI J SH,ZHANG SH J,YANG Y W, et al.. Edge-detached image restoration with ringing reduction[J].Opt. Precision Eng., 2014,22(3):797-805. (in Chinese)
徐冬,孙蕾,罗建书. 结合NAPCA和复小波变换的高光谱遥感图像去噪[J]. 红外与激光工程,2015,44(1):327-334.
XU D, SUN L, LUO J SH. Denoising of hyperspectral remote sensing imagery using NAPCA and complex wavelet transform[J]. Infrared and Laser Engineering,2015,44(1):327-334.(in Chinese)
吴一全,殷骏. 结合Contourlet与ACPSO的红外热波图像增强[J]. 系统工程与电子技术,2015,37(2):443-448.
WU Y Q,YIN J. Enhancement of infrared thermal wave images based on contourlet and adaptive chaotic variation particle swarm optimization[J]. Systems Engineering and Electronics,2015,37(2):443-448. (in Chinese)
周妍,李庆武,霍冠英. 基于非下采样Contourlet变换系数直方图匹配的自适应图像增强[J]. 光学 精密工程,2014,22(8):2214-2222.
ZHOU Y,LI Q W,HUO G Y. Adaptive image enhancement based on NSCT coefficient histogram matching[J].Opt. Precision Eng., 2014,22(8):2214-2222.(in Chinese)
张红英,罗晓清,吴小俊. 基于CHMM的尖锐频率局部化Contourlet域图像去噪[J]. 红外与激光工程,2014,43(7):2341-2348.
ZHANG H Y, LUO X Q, WU X J. Contextual hidden Markov model based image denoising in sharp frequency localized Contourlet transform domain[J]. Infrared and Laser Engineering,2014,43(7):2341-2348.(in Chinese)
ORAN M G, MAHDAVI M. Global best Harmony search[J].Applied Mathematics and Computation, 2008, 198(2):643-666.
DO M N,VETTERLI M.The contourlet transform:an efficient directional multiresolution image representation[J].IEEE Transactions on Image Processing,2005,14(12):2091-2106.
赵九龙,马瑜,李爽,等. 三维医学图像的混合噪声去除方法[J]. 液晶与显示,2015,30(2):340-346.
ZHAO J L, MA Y, LI SH, et al..Mixed noise removing method for three-dimensional medical images[J]. Chinese Journal of Liquid Crystals and Displays, 2015,30(2):340-346.(in Chinese)
DAS S, MUKHOPADHYAY A, ROY A, et al.. Exploratory power of the harmony search algorithm:analysis and improvements for global numerical optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics, 2011, 41(1):89-106.
LOPEZ M C,DE B B,BUSTINCE H.Quantitative error measures for edge detection[J].Pattern Recognition,2013,46(4):1125-1130.
0
浏览量
349
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构