浏览全部资源
扫码关注微信
中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
张学军(1968-),男,吉林长春人,博士,研究员,博士生导师,主要从事空间光学系统超精加工与检测和空间光学遥感器总体技术等方面的研究。 E-mail:zxj@ciomp.ac.cn. E-mail:zxj@ciomp.ac.cn.
[ "樊延超(1984-),男,河南洛阳人,硕士,副研究员,2006年、2008年于天津大学分别获得学士、硕士学位,主要从事空间光学遥感器光机机构设计方面的研究。E-mail:dulangfan303@163.com" ]
收稿日期:2016-10-27,
录用日期:2016-11-3,
纸质出版日期:2016-11-25
移动端阅览
张学军, 樊延超, 鲍赫, 等. 超大口径空间光学遥感器的应用和发展[J]. 光学 精密工程;Editorial Office of Optics and Precision Engineeri, 2016,24(11):2613-2626.
Xue-jun ZHANG, Yan-chao FAN, He BAO, et al. Applications and development of ultra large aperture space optical remote sensors[J]. Optics and precision engineering, 2016, 24(11): 2613-2626.
张学军, 樊延超, 鲍赫, 等. 超大口径空间光学遥感器的应用和发展[J]. 光学 精密工程;Editorial Office of Optics and Precision Engineeri, 2016,24(11):2613-2626. DOI: 10.3788/OPE.20162411.2613.
Xue-jun ZHANG, Yan-chao FAN, He BAO, et al. Applications and development of ultra large aperture space optical remote sensors[J]. Optics and precision engineering, 2016, 24(11): 2613-2626. DOI: 10.3788/OPE.20162411.2613.
针对空间遥感技术的迅速发展及其对空间探测精度需求的提高,对研制更可行有效的超大口径空间光学遥感器的技术路线开展了研究。介绍了该领域已发射和计划发射的超大口径光学遥感器涉及的发展历史和结构特点,以及它们的研究现状和应用领域,主要包括整体式成像系统、分块可展开成像系统、光学干涉合成孔径成像系统和衍射成像系统等。分析对比了各种传感器的性能特点及现阶段的应用情况。最后,考虑我国高分辨率、高成像质量空间光学遥感器的应用需求,结合当前技术条件以及相关技术的发展趋势,分别针对2~4 m大口径系统,4~10 m超大口径系统和更大口径系统的成像需求提出了最佳解决方案。
For the rapid development of space remote sensing technology and the improvement of demand for space detection precision
this paper researches the more feasible and effective technological routes for ultra large aperture optical remote sensors. Several kinds of optical remote sensors that have been launched or planed are included
such as monolithic aperture imaging system
deployable segmented imaging system
interferometric synthetic aperture imaging system and diffractive imaging system. The research process
structure characteristics
developing states and application fields of the remote sensors are described. Details on the performance characteristics and application situations of various sensors are discussed in later sections. According to the requirements of space optical remote sensors with high resolution and high imaging quality
some suggestions on developing space optical remote sensors with ultra large apertures of 2-4 m
4-10 m and some super large apertures are put forward respectively based on the current technical conditions and development trends.
LILLIE C F. Large deployable telescopes for future space observatories[J]. SPIE,2005, 5899:1-12.
KENDRICK S E, STAHL H P. Large aperture space telescope mirror fabrication trades[J].SPIE,2008, 7010:70102G.
STAHL H P, THRONSON H, LANGHOFF S,et al.. Potential astrophysics science missions enabled by NASA's planned Ares V[J]. SPIE,2009, 7436:743607.
MA ZH B, HE L SH. Development trend review of foreign heavy-lift launch vehicle[J]. Journal of Solid Rocket Technology, 2012, 35(1):1-4. (in Chinese)
马志滨,何麟书. 国外重型运载火箭发展趋势述评[J]. 固体火箭技术,2012,35(1):1-4.
黄瑛. 基于夏克_哈特曼波前传感的膜基反射镜面形检测[D]. 苏州:苏州大学,2014.
HUANG Y. Measuring the Surface Shape of Membrane Mirror Based on Shack-Hartmann Wavefront Sensor[D]. Suzhou:Soochow University, 2014. (in Chinese)
MEINEL A B. Aperture synthesis using independent telescopes[J]. Appl. Opt., 1970, 9(11):2501-2504.
FAUCHERRE M, DELABRE B, DIERICKX P,et al.. Michelson versus fizeau type beam combination:is there a difference?[J]. SPIE, 1990, 1237:206-217.
MEINEL A B, MEINEL M P. Large sparse-aperture space optical systems[J].Opt. Eng., 2002, 41(8):1983-1994.
FIENUP J R, GRIFFITH D K, HARRINGTON L,et al.. Comparision of reconstruction algorithms for images from sparse-aperture systems[J]. SPIE, 2002, 4792:1-8.
ANDERSEN G.Photon sieve telescope[J]. SPIE, 2005, 5899:58990T.
KIPP L, SKIBOWSKIM, JOHNSON R L, et al.. Sharper images by focusing soft X-rays with photon sieves[J].Nature, 2001, 414(6860):184-188.
ALLEN L, ANGEL R, MANGUS J D,et al.. The Hubble Space Telescope Optical Systems Failture Report[R]. Pasadena:NASA,1990.
FEINBERG L D, GEITHNER P H. Applying HST lessons learned to JWST[J].SPIE, 2008, 7010:70100N.
BOUGOIN M, LAVENAC J. From HERSCHEL to GAIA, 3-meter class SiC space optics[J].SPIE, 2011, 8126:81260V.
PILBRATT G L. Herschel mission overview and key programmes[J].SPIE, 2008, 7010:701002.
TOULEMONT Y, PASSVOGEL T, PILBRAT G L, et al.. The 3,5 m all SiC telescope for HERSCHEL[J]. SPIE, 2004, 5487:1119-1128.
ARGABRIGHT V, ARNOLD B, ARONSTEIN D,et al.. Advanced Technology Large-Aperture Space Telescope(ATLAST):A Technology Roadmap for the Next Decade[R]. Pasadena:NASA, 2009.
DOOLEY J A, LAWSON P R.Technology Plan for the Terrestrial Planet Finder Coronagraph[R]. Pasadena:NASA, 2005.
MEINEL A B, MEINEL M P. Inflatable membrane mirrors for optical passband imagery[J].Opt. Eng., 2000, 39(2):541-550.
SOH M, LEE H J, YOUN S K. An inflatable circular membrane mirror for space telescope[J]. SPIE, 2005, 5638:262-271.
ANDERSEN G P, KNIZE R J, PALISOCA L, et al.. Large-aperture holographically corrected membrane telescope[J].Optical Engineering, 2002, 41(7):1603-1607.
CHODIMELLA S, MOORE J D, PATRICK B G,et al..Design, fabrication, and validation of an ultra-lightweight membrane mirror[J]. SPIE, 2005, 5894:589416.
MOORE J D, PATRICK B G, CHODIMELLA S,et al.. Design and testing of a one-meter membrane mirror with active boundary control[J]. SPIE, 2005, 5899:58990Z.
ROBINSON L,WICKERSHAM M A,KORDE U A. Membrane mirrors with boundary located electrostatic actuators for excitation of multiple modes[C]. Proceedings of the 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, US:AIAA, 2009:171-180.
ROBINSON L K,WICKERSHAM M A,KORDE U A,et al.. Experiments on a twelve mode membrane mirror with boundary located electrostatic actuators[C]. Proceedings of the 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference,Orlando:AIAA, 2010:7580-7589.
DIMAKOV S A, BOGDANOV M P, GORLANOV A V,et al.. Electrically controlled pre-shaped membrane mirror for systems with wavefront correction[J]. SPIE, 2003, 5162:147-156.
GREENHOUSE M A. The JWST science instrument payload:mission context and status[J].SPIE, 2014, 9143:914307.
ATKINSON C, TEXTER S, KESKI-KUHA R, et al.. Status of the JWST optical telescope element[J]. SPIE, 2012, 8442:84422E.
ATKINSON C, TEXTER S, KESKI-KUHA R, et al.. Status of the JWST optical telescope element[J]. SPIE, 2016, 9904:990403.
GLASSMAN T, LEVI J, LIEPMANN T,et al.. Alignment of the James Webb space telescope optical telescope element[J]. SPIE, 2016, 9904:99043Z.
REY J J, WIRTH A, JANKEVICS A, et al.. A deployable, annular, 30m telescope, space-based observatory[J]. SPIE, 2014, 9143:914318.
FRIDLUND C V M. Darwin-the infrared space interferometry mission[J]. ESA-bulletin, 2000,103(3):20-25.
ESA.Darwin, Science Across Disciplines:A Proposal for the Cosmic Vision 2015-2025[EB/OL]. http://www.mpia.de/Darwin/CV2007. http://www.mpia.de/Darwin/CV2007. [2007-01-25].
WALLNER O, ERGENZINGER K, FLATSCHER R, et al.. DARWIN mission and configuration trade-off[J]. SPIE, 2006, 6268:626827.
ESA.Darwin:Study Ended, No Further Activities Planned[EB/OL]. http://www.esa.int/Our_Activities/Space_Science/Darwin_overview. http://www.esa.int/Our_Activities/Space_Science/Darwin_overview. [2009-10-23].
LAY O P, GUNTER S M, HAMLIN L A, et al.. Architecture trade study for the terrestrial planet finder interferometer[J]. SPIE, 2005, 5905:590502.
LAY O P, DUBOVITSKY S. Nulling interferometers:the importance of systematic errors and the X-array configuration[J].SPIE, 2004, 5491:874-885.
LAY O P, MARTIN S R, HUNYADI S L. Planet-finding performance of the TPF-I Emma architecture[J].SPIE, 2007, 6693:66930A.
MULLEN L. Rage against the dying of the light[N/OL]. http://www.astrobio.net/news-exclusive/rage-against-the-dying-of-the-light. Astrobiology Magazine. http://www.astrobio.net/news-exclusive/rage-against-the-dying-of-the-light. Astrobiology Magazine. [2011-06-02].
ZARIFIS V, Jr BELL R M, BENSON L R, et al.. The multi aperture imaging array[C]. Proceeding of Working on the Fringe:An International Conference on Optical and IR Interferometry from Ground and Space,San Francisco:ASP,1999:278-285.
KENDRICK R L, AUBRUN J N, BELL R, et al.. Wide-field Fizeau imaging telescope:experimental results[J]. Applied Optics, 2006, 45(18):4235-4240.
CHUNG S J, MILLER D W, DE WECK O L. ARGOS testbed:study of multidisciplinary challenges of future spaceborne interferometric arrays[J]. Opt. Eng., 2004, 43(9):2156-2167.
HYDE R A, DIXIT S N, WEISBERG A H, et al.. Eyeglass:a very large aperture diffractive space telescope[J]. SPIE, 2002, 4849:28-39.
DAPPA.Membrane Optical Imager for Real-time Exploitation[EB/OL]. http://www.darpa.mil/Our_Work/TTO/Programs/Membrane_Optical_Imager_for_Real-Time_Exploitation_(MOIRE).aspx. http://www.darpa.mil/Our_Work/TTO/Programs/Membrane_Optical_Imager_for_Real-Time_Exploitation_(MOIRE).aspx. [2011-12-04].
ATCHESON P D, STEWART C, DOMBER J, et al.. MOIRE:initial demonstration of a transmissive diffractive membrane optic for large lightweight optical telescopes[J]. SPIE, 2012, 8442:844221.
ATCHESON P, DOMBER J, WHITEAKER K, et al.. MOIRE:ground demonstration of a large aperture diffractive transmissive telescope[J]. SPIE, 2014, 9143:91431W.
WALLER D, CAMPBELL L, DOMBER J, et al.. MOIRE primary diffractive optical element structure deployment testing[C]. Proceedings of the 2nd AIAA Spacecraft Structures Conference,Florida:AIAA, 2015:536-545.
DAW A.First Solar Images Using a Photon Sieve[EB/OL]. http://science.gsfc.nasa.gov/sed/index.cfm?fuseaction=localnews.main&navOrgCode=671. http://science.gsfc.nasa.gov/sed/index.cfm?fuseaction=localnews.main&navOrgCode=671. [2011-10-15].
ANDERSEN G, ASMOLOV O, DEARBORN M E, et al.. FalconSAT-7:a membrane photon sieve Cubesat solar telescope[J].SPIE, 2012,8442:84421C.
ANDERSEN G P, ASMOLOVA O. FalconSAT-7:a membrane space telescope[J].SPIE, 2014, 9143:91431X.
0
浏览量
500
下载量
26
CSCD
关联资源
相关文章
相关作者
相关机构