浏览全部资源
扫码关注微信
上海理工大学 教育部微创医疗器械工程中心, 上海 200093
[ "陈明惠(1981-),女,福建南靖人,博士,副教授,硕士生导师,2012年于浙江大学获得博士学位,主要从事生物医学光子学方面的研究。E-mail:cmhui.43@163.com" ]
郑刚(1962-),男,浙江余姚人,博士,研究员,博士生导师,1982年于南京理工大学(原华东工程学院)获得学士学位,1985年于天津大学获得硕士学位,1993年于华东工业大学获得博士学位,主要从事光学工程相关领域的教学和科研工作。 E-mail:gangzheng@usst.edu.cn. E-mail:gangzheng@usst.edu.cn.
收稿日期:2016-07-11,
录用日期:2016-8-1,
纸质出版日期:2016-11-25
移动端阅览
陈明惠, 范云平, 张浩, 等. 基于声光调谐的扫频光源[J]. 光学 精密工程, 2016,24(11):2658-2664.
Ming-hui CHEN, Yun-ping FAN, Hao ZHANG, et al. Swept source laser based on acousto-optic tuning[J]. Editorial office of optics and precision engineeri, 2016, 24(11): 2658-2664.
陈明惠, 范云平, 张浩, 等. 基于声光调谐的扫频光源[J]. 光学 精密工程, 2016,24(11):2658-2664. DOI: 10.3788/OPE.20162411.2658.
Ming-hui CHEN, Yun-ping FAN, Hao ZHANG, et al. Swept source laser based on acousto-optic tuning[J]. Editorial office of optics and precision engineeri, 2016, 24(11): 2658-2664. DOI: 10.3788/OPE.20162411.2658.
提出了一种利用声光调谐方法进行滤波的扫频光源来提高它的输出稳定性。阐述了实现光源稳定输出的原理和方法,研究和分析了光源的相关参数。该系统采用声光调谐的方法代替机械滤波的方式。在一个环形腔内,使用半导体光放大器(SOA)作为增益介质,声光可调谐滤波器(AOTF)作为波长选择元件,利用声光调谐的原理对腔内的光进行选频滤波。在280 mA的注入电流下,得到了1 294~1 368 nm的扫频光源,其中心波长为1 328 nm,半高全宽为51 nm,扫频速度为3 731 Hz,环形腔内直接输出的光功率为1.14 mW。由于AOTF是电控制元件,波长的调谐不需要机械移动部件,故提高了系统的稳定性,输出光谱的重复性也很好。实验显示:通过这种方法获得的扫频光源输出稳定,基本满足扫频相干层析成像系统对扫频光源工艺参数的要求。
A swept-source laser by using an Acousto-optic Tunable Filter(AOTF) was researched to improve the stability of the source output. The principles and method to implement output stability of the source were described
and corresponding parameters of the source were analyzed. An acousto-optic tuning was selected to replace the mechanical filtering to improve its output stability. A Semiconductor Optical Amplifier(SOA) was used as a gain medium and the AOTF was used as a wavelength-selected element in an internal fiber ring cavity. The acousto-optic interaction was used in the filtering of light in the cavity. With the SOA injection current of 280 mA
the continuous wavelength tuning range of the source is from 1 294 to 1 368 nm centered at a wavelength of 1 330 nm
and its sweep rate is 3 731 Hz
the full width at half maximum is 51 nm and the output power from the ring cavity is 1.14 mW. By using the electric control element AOTF
the system implements the electronic tuning without mechanical movement elements
so it shows good output stability and excellent spectral repetition. It concludes that the swept-source laser obtained by this method has a stable output and satisfies the requirements of the other parameters of the swept source optical coherence tomography.
李相银. 激光原理技术及应用[M]. 哈尔滨:哈尔滨工业大学出版社, 2004:422-430.
LI X Y.The Principle of Laser Technology and Its Application[M]. Harbin:Harbin Institute of Technology Press, 2004:422-430.(in Chinese)
MANSOURI K, MEDEIROS F A, MARCHASE N, et al.. Assessment of choroidal thickness and volume during the water drinking test by swept-source optical coherence tomography[J]. Ophthalmology, 2013,120(12):2508-2516.
FERRARA D, MOHLER K J, WAHEED N, et al.. En face enhanced-depth swept-source optical coherence tomography features of chronic central serous chorioretinopathy[J]. Ophthalmology, 2013,121(3):719-726.
陈明惠,李昊,范云平. 30 kHz窄瞬时线宽扫频激光光源的研制[J]. 中国激光,2016,43(4):0416001.
CHEN M H, LI H, FAN Y P. Development of 30 kHz repetition rate swept laser source with narrow instantaneous linewidth[J]. Chinese Journal of Lasers, 2016,43(4):0416001.(in Chinese)
KOSTIN Y O, LADUGIN M A, LOBINTSOV A A, et al.. Semiconductor lasers with a continuous tuning range above 100 nm in the nearest IR spectral region[J]. Quantum Electronics, 2015,45(8):697-700.
MORENO J R, RUIZ-MEDRANO J, FLORES-MORENO I, et al.. Macular choroidal thickness profile in healthy population measured by swept-source optical coherence tomography[J]. Retina, 2015,35(10):3532-3542.
PAGNONI A, KNUETTEL A, WELKER P, et al.. Optical coherence tomography in dermatology[J]. Giornale Italiano Di Dermatologia E Venereologia, 2015,18(6):1526-1534.
何卫红,何永红,李鹏,等. 眼底OCT成像系统的研制[J]. 光学 精密工程, 2008, 16(3):438-443.
HE W H, HE Y H, LI P, et al.. Development of imaging system for optical coherence tomography in ophthalmology[J].Opt. Precision Eng.,2008,16(3):438-443.(in Chinese)
YONETSU T, KATO K, BOUMA B E, et al.. Optical coherence tomography[J]. Circulation Journal, 2013,28(21):2049-2051.
FORD H D, TATAM R P. Characterization of optical fiber imaging bundles for swept-source optical coherence tomography[J].Applied Optics, 2011,50(5):627-640.
LIEW Y M, MCLAUGHLIN R A, GONG P, et al.. In vivo assessment of human burn scars through automated quantification of vascularity using optical coherence tomography[J]. Journal of Biomedical Optics, 2013,18(6):400-404.
曾楠,何永红,马辉. 用于玉石结构分析的光学相干层析技术[J]. 光学 精密工程, 2008, 16(7):1335-1342.
ZENG N, HE Y H, MA H. Imaging and analyzing subsurface morphologies of jade objects with optical coherence tomography[J].Opt. Precision Eng., 2008,16(7):1335-1342.(in Chinese)
STEIN B A, JAYARAMAN V, JIANG J Y, et al.. Doppler-limited H 2 O and HF absorption spectroscopy by sweeping the 1,321-1,354 nm range at 55 kHz repetition rate using a single-mode MEMS-tunable VCSEL[J]. Applied Physics B, 2012,108(4):721-725.
许全盛,冯曙,叶大田. 光学相干层析术无损检测血糖的测量效果评价[J]. 光学 精密工程, 2010, 18(12):2688-2694.
XU Q SH, FENG SH, YE D T. Evaluation of non-invasive detection of blood glucose using OCT[J].Opt. Precision Eng.,2010, 18(12):2688-2694.(in Chinese)
赵慧洁, 程宣, 张颖. 用于火星探测的声光可调谐滤波器成像光谱仪[J]. 光学 精密工程, 2012, 20(9):1945-1952.
ZHAO H J, CHENG X, ZHANG Y.Design of acousto-optic imaging spectrometer for mars exploration[J]. Opt. Precision Eng.,2012,20(9):1945-1952.(in Chinese)
BIRNGRUBER R, HUTTMANN G. Imaging of photothermal tissue expansion via phase sensitive optical coherence tomography[J]. SPIE, 2012,8213(1):82131S.
LEE S W, KIM B M. Line-field optical coherence tomography using frequency-sweeping source[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2008,14(1):50-55.
HUBER R, WOJTKOWSKI M, TAIRA K, et al.. Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging:design and scaling principles[J]. Optics Express, 2005,13(9):3513-3528.
HILLMANN D, BONIN T, LVHRS C, et al.. Common approach for compensation of axial motion artifacts in swept-source OCT and dispersion in Fourier-domain OCT[J]. Optics Express, 2012,20(6):6761-6776.
KODACH V M, FABER D J, LEEUWEN T G V. Wavelength swept Ti:sapphire laser[J].Optics Communications, 2008,281(19):4975-4978.
0
浏览量
1041
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构