浏览全部资源
扫码关注微信
1.山东科技大学 机械电子工程学院, 山东 青岛 266590
2.中国石油大学 (华东)理学院, 山东 青岛 266580
杜小振(1978-),男,河南邓州人,博士,副教授,硕士生导师,2003年、2008年于大连理工大学分别获得硕士、博士学位,主要从事微电源,海洋能发电和传感器技术等方面的研究。E-mail:du_xzh@163.comE-mail:du_xzh@163.com
[ "张龙波(1990-),男,山东潍坊人,硕士研究生,2012年于中国海洋大学青岛学院获得学士学位,主要从事压电电磁复合宽频微电源技术的研究。E-mail:zhang_long_bo123@163.com" ]
收稿日期:2016-04-20,
录用日期:2016-5-27,
纸质出版日期:2016-11-25
移动端阅览
杜小振, 张龙波, 于红. 磁力调频压电电磁复合发电设计与实验[J]. 光学 精密工程, 2016,24(11):2753-2760.
Xiao-zhen DU, Long-bo ZHANG, Hong YU. Design and experiment of piezoelectric electromagnetic hybrid broadband generator with magnetic force tuning[J]. Editorial office of optics and precision engineeri, 2016, 24(11): 2753-2760.
杜小振, 张龙波, 于红. 磁力调频压电电磁复合发电设计与实验[J]. 光学 精密工程, 2016,24(11):2753-2760. DOI: 10.3788/OPE.20162411.2753.
Xiao-zhen DU, Long-bo ZHANG, Hong YU. Design and experiment of piezoelectric electromagnetic hybrid broadband generator with magnetic force tuning[J]. Editorial office of optics and precision engineeri, 2016, 24(11): 2753-2760. DOI: 10.3788/OPE.20162411.2753.
开展了基于环境振动发电作为微电源弥补传统化学电池供能缺陷的研究。基于非线性磁力调频开发了低宽频振动能采集压电电磁复合发电系统。介绍了发电装置工作原理;利用ANSYS和Ansoft Maxwell有限元分析软件仿真分析了压电和电磁发电的输出特性;最后,搭建了压电电磁复合宽频发电装置实验测试系统,测试了发电系统在磁力自调过程中的输出特性。实验结果显示:复合发电系统在谐振频率60 Hz时输出开路电压峰值为5.8 V,高于压电系统(5.5 V)和电磁系统(410 mV)独立发电的开路电压峰值。施加磁力拓宽装置后,当压电悬臂梁沿竖直方向上下移动0~15 mm时,系统适应谐振频带拓宽为45~76 Hz;悬臂梁沿水平方向平移0~30 mm时,谐振频带拓宽为51~70 Hz。结果表明仿真分析与实验测试结果吻合很好。该宽频带能量采集技术可用于低频振动环境的能量采集,可在频变环境中为微型低功耗系统提供低电能。
This paper focuses on environmental vibration energy harvesting generator to provide low energy for a micro low-power system. A piezoelectric electromagnetic hybrid broadband power generator was developed based on nonlinear magnetic force tuning. The working principle of the power generator was introduced
and its output power characteristics by the piezoelectric system and electromagnetic system were respectively simulated with the software of ANSYS and Ansoft Maxwell. Then
an experiment system was set up to test the output power characteristics of the power generator with the magnetic force tuning. Experimental results indicate that the peak output open voltage from the power generator is 5.8 V at the resonance frequency of 60 Hz
which is higher than that of the piezoelectric system(5.5 V)and the electromagnetic system (410 mV)independently. When the natural frequency is adjusted with the magnetic force tuning
its resonance frequency band expands from 45 to 76 Hz as the piezoelectric cantilever beam moves from -15 mm to 15 mm in the vertical direction. And the resonance frequency band expands from 51 to 70 Hz similarly as the cantilever beam moves from 0 to 30 mm in the horizontal direction. The experiments show that the simulation analysis results are coincided with that tested results well. It demonstrates that the broadband energy harvesting system can use in low-frequency environment random vibration and can satisfy the demands of low-power of wireless sensor systems.
TEKKALMAZ M, KORPEOGLU I. Distributed power-source-aware routing in wireless sensor networks[J]. Wireless Networks, 2016, 22(4):1381-1399.
陈德勇, 曹明威, 王军波,等. 谐振式MEMS压力传感器的制作及圆片级真空封装[J]. 光学 精密工程, 2014, 22(5):1235-1242.
CHEN D Y, CAO M W, WANG J B, et al .. Fabrication and wafer-level vacuum packaging of MEMS resonant pressure sensor[J]. Opt. Precision Eng ., 2014, 22(5):1235-1242.(in Chinese)
崔玉国, 朱耀祥, 娄军强,等. 压电微夹钳钳指位移与夹持力的检测[J]. 光学 精密工程, 2015, 23(5):1372-1379.
CUI Y G, ZHU Y X, LOU J Q, et al .. Detection of finger displacement and gripping force of piezoelectric micro-gripper[J]. Opt. Precision Eng ., 2015, 23(5):1372-1379.(in Chinese)
贾志超. 压电自供电无线传感器网络节点关键技术的研究[D]. 哈尔滨:哈尔滨理工大学, 2015.
JIA ZH CH. The Research on Key Technology of Piezoelectric Self-powered Wireless Sensor Network Nodes [D]. Harbin:Harbin University of Science and Technology, 2015.(in Chinese)
CHEN L J, XU X H, ZENG P L, et al .. Integration of energy harvester for self-powered wireless sensor network nodes[J]. International Journal of Distributed Sensor Networks, 2014, 2014(4):1-7.
王淑云, 张肖逸, 阚君武,等. 气体耦合式宽带/低频压电振动俘能器[J]. 光学 精密工程, 2015, 23(2):497-503.
WANG SH Y, ZHANG X Y, KAN J W, et al .. Wideband/low frequency piezoelectric vibration energy harvester based on pneumato-coupling[J]. Opt. Precision Eng ., 2015, 23(2):497-503.(in Chinese)
李伟, 车录锋, 王跃林. 横向电磁式振动能量采集器的设计与制作[J]. 光学 精密工程, 2013, 21(3):694-700.
LI W, CHE L F, WANG Y L. Design and fabrication of transverse electromagnetic vibration energy harvester[J]. Opt. Precision Eng ., 2013, 21(3):694-700.(in Chinese)
MOHAMMADI S, ESFANDIARI A. Magnetostrictive vibration energy harvesting using strain energy method[J]. Energy, 2015, 81:519-525.
DU X Z, ZENG X W, WANG G. Structural design and simulation analysis of a micro-silicon-based piezoelectric cantilever generator[J]. Proceedings of the Institution of Mechanical Engineers Part N Journal of Nanoengineering & Nanosystems, 2014, 229(4).
JOYCE B S, FARMER J, INMAN D J. Electromagnetic energy harvester for monitoring wind turbine blades[J]. Wind Energy, 2014, 17(6):869-876.
刘颖, 王艳芬, 李刚,等. MEMS低频压电振动能量采集器[J]. 光学 精密工程, 2014, 22(9):2476-2482.
LIU Y, WANG Y F, LI G, et al .. MEMS-based low-frequency piezoelectric vibration energy harvester[J]. Opt. Precision Eng ., 2014, 22(9):2476-2482.(in Chinese)
LI P W, LIU Y, WANG Y F, et al .. Low-frequency and wideband vibration energy harvester with flexible frame and interdigital structure[J]. Aip Advances, 2015, 5(4):8740-1296.
TANG Q C, LI X X. A wide-band piezoelectric energy-harvester for high-efficiency power generation at low frequencies[C]. The 17th International Conference on Solid-State Sensors, Actuators and Microsystems(Transducers & Eurosensors XXVⅡ), 2013 Transducers & Eurosensors XXVⅡ:Barcelona, ESP, 2013:697-700.
崔岩, 王飞, 董维杰,等. 非线性压电式能量采集器[J]. 光学 精密工程, 2012, 20(12):2737-2743.
CUI Y, WANG F, DONG W J, et al .. Nonlinear piezoelectric energy harvester[J]. Opt. Precision Eng ., 2012, 20(12):2737-2743.(in Chinese)
BERDY D F, JUNG B, RHOADS J F, et al .. Wide-bandwidth meandering vibration energy harvester with distributed circuit board inertial mass[J]. Sensors & Actuators A Physical, 2012, 188(12):148-157.
DAUKSEVICIUS R, BRIAND D, LOCKHART R, et al .. Frequency up-converting vibration energy harvester with multiple impacting beams for enhanced wideband operation at low frequencies[J]. Procedia Engineering, 2014, 87:1517-1520.
HALIM M A, CHO H O, PARK J Y. A handy motion driven, frequency up-converting piezoelectric energy harvester using flexible base for wearable sensors applications[C]. Sensors. IEEE . Busan, Korea, 2015:1-4.
LELAND E S, WRIGHT P K. Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload[J]. Smart Materials & Structures, 2006, 15(5):1413-1420(8).
WU X, LEE D W. A high-efficient broadband energy harvester based on non-contact coupling technique for ambient vibrations[C]. IEEE International Conference on MICRO Electro Mechanical Systems, 2015:1110-1113.
LALLART M, ANTON S R, INMAN D J. Frequency self-tuning scheme for broadband vibration energy harvesting[J]. Journal of Intelligent Material Systems and Structures, 2010, 21(9):897-906.
高世桥,李平,金磊,等. 基于MEMS技术的压电——电磁复合式宽频俘能器:中国专利103199738A[P]. 2013.
GAO S Q, LI P, JIN L, et al .. Piezoelectric and electromagnetic wide-band generator based on MEMS technology :China Patent 103199738A[P]. 2013.(in Chinese)
CHALLA V R, PRASAD M G, FISHER F T. Towards an autonomous self-tuning vibration energy harvesting device for wireless sensor network applications[J]. Smart Materials & Structures, 2011, 20(2):25004-11.
张国策. 磁场中悬臂梁的非线性振动[D]. 上海:上海大学, 2014.
ZHANG G C. Nonlinear Oscillations of Cantilevers with Magnetic Interactions [D]. Shanghai:Shanghai University, 2014.(in Chinese)
0
浏览量
743
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构