浏览全部资源
扫码关注微信
中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
曹玉岩(1986-),男,吉林大安人,助理研究员,2009年、2012年于西安电子科技大学分别获学士、硕士学位,主要从事结构有限元理论、结构振动控制技术研究. E-mail:yuyan_cao@126.com. E-mail:yuyan_cao@126.com.
[ "王志臣(1980-),男,黑龙江大兴安岭人,副研究员,主要从事望远镜光机结构设计研究。E-mail:zcwang911@163.com" ]
收稿日期:2015-12-23,
录用日期:2016-2-4,
纸质出版日期:2016-11-25
移动端阅览
曹玉岩, 王志臣, 周超, 等. 光学元件挠性支撑结构广义建模及优化设计[J]. 光学 精密工程;Editorial Office of Optics and Precision Engineeri, 2016,24(11):2792-2803.
Yu-yan CAO, Zhi-chen WANG, Chao ZHOU, et al. General modeling and optimal design of flexure supporting structure for optical components[J]. Optics and precision engineering, 2016, 24(11): 2792-2803.
曹玉岩, 王志臣, 周超, 等. 光学元件挠性支撑结构广义建模及优化设计[J]. 光学 精密工程;Editorial Office of Optics and Precision Engineeri, 2016,24(11):2792-2803. DOI: 10.3788/OPE.20162411.2792.
Yu-yan CAO, Zhi-chen WANG, Chao ZHOU, et al. General modeling and optimal design of flexure supporting structure for optical components[J]. Optics and precision engineering, 2016, 24(11): 2792-2803. DOI: 10.3788/OPE.20162411.2792.
建立了挠性支撑结构的力学模型及优化设计模型,以使光学元件挠性支撑结构同时满足元件定位的刚度要求和温度适应性的柔度要求,同时给出了相应的建模方法。考虑挠性支撑结构是由圆周对称分布的挠性单元组成的,故将挠性单元简化为超静定梁结构,应用虚功原理推导了挠性单元的径向及切向刚度。然后,假设光学元件为刚性体,根据力平衡条件及变形协调条件,推导了挠性支撑结构的整体刚度,并引入修正因子补偿了刚体假设带来的误差。最后,以挠性支撑结构总变形能为目标函数,推导了同时考虑挠性支撑结构几何构形及参数的协同优化设计模型,通过引入了整型变量将结构整体刚度简化为整型变量和离散刚度的线性组合,从而使优化模型中不含有谐波函数项。基于数值仿真和实验对结构刚度模型进行了验证,结果显示:实验、仿真和理论计算结果一致。此外,以透镜支撑为例,验证了挠性支撑结构的优化设计方法,有限元分析结果表明,透镜面形精度较初始设计提高了23%。
A mechanical and a parameter optimization model for flexure support structure of optical components were proposed to allow the flexure structure meet simultaneously the requirements of the stiffness for optical component position and the compliance for temperature adaptability。Meanwhile
the corresponding modeling method was investigated. As this flexure structure was consisted of several identical flexure parts
it was simplified into an indeterminate beam structure
and the radical stiffness and tangential stiffness were derived using the virtual work principle. Then
by assuming optical components for the rigid body
the whole stiffness of the flexure support structure was derived based on the force equilibrium and its compatible deformation
and the correction factor was introduced to compensate the error caused by the rigid assumption. Finally
the total strain energy of the flexure structure was taken as the objective function
and the collaborative optimization model was derived considering the geometrical pattern and parameters simultaneously. By introducing the integral variables
the whole stiffness of the structure was simplified into a linear combination of the integral variable and discrete stiffness
and the harmonic terms were eliminated. The whole stiffness model was verified by the simulation and experiment
and the experiment results are highly in agreement with the simulation results. A lens mounting was taken for an example
the optimization method of the flexure mounting structure was verified. The finite element simulation results show that the surface precision of the lens has been improved by 23%.
SCHWERTZ K, BURGE J. Field Guide to Optomechanical Design and Analysis[M]. Washington USA:SPIE Press, 2012.
PAROS J M, WEISBORD L. How to design flexure hinge[J]. Machine Design,1965, 37(1):151-157.
CAI K H, TIAN Y L, WANG F J, et al.. Development of a piezo-driven 3-DOF stage with T-shape flexible hinge mechanism[J]. Robotics and Computer-Integrated Manufacturing, 2016, 37(2):125-138.
XU Q. Design, testing and precision control of a novel long-stroke flexure micropositioning system[J]. Mechanism and Machine Theory, 2013, 70:209-224.
YOLDER P R. Opto-Mechanical Systems Design[M]. Third ed. Washington:CRC Press, 2006.
YOLDER P R. Mounting Optics in Optical Instruments[M]. Second ed,Washington:SPIE Press,2008.
FATA R, KRADINOV V, FABRICANT D. Flexure mounts for high-performance astronomical lenses[J]. Proc. SPIE, 2006,6269,doi:101117/12.672634.
范磊, 张景旭, 吴小霞, 等. 大口径轻量化主镜边缘侧向支撑的优化设计[J]. 光学 精密工程,2012,20(10):2207-2213.
FAN L, ZHANG J X, WU X X, et al.. Optimum design of edge lateral support for large aperture lightweight primary mirror[J]. Opt. Precision Eng., 2012, 20(10):2207-2213.(in Chinese)
陈夫林, 张景旭, 吴小霞,等. 620 mm薄镜面的主动支撑结构及面形校正[J]. 光学 精密工程,2011,19(5):1022-1029.
CHEN F L, ZHANG J X, WU X X, et al.. Supporting structure of 620 mm thin primary mirror and its active surface correction[J]. Opt. Precision Eng., 2011, 19(5):1022-1029.(in Chinese)
赵磊,巩岩. 光刻物镜中透镜高精度支撑结构的设计及分析[J]. 光学学报,2012,32(9):0922001-0922009.
ZHAO L, GONG Y. Design and analysis for the high-precision lens support structure of ojective lens for lithography[J]. Acta Optica Sinica,2012, 32(9):0922001-0922009.(in Chinese)
倪明阳,巩岩. 光刻投影物镜光学元件运动学支撑结构的设计与分析[J]. 中国光学,2012,5(5):476-484.
NI M Y, GONG Y. Design and analysis of kinematic lens positioning structure in lithographic projection objective[J]. Chinese Optics,2012, 5(5):476-484.(in Chinese)
马磊,曹佃生,刘承志. 大口径透镜多点柔性支撑结构设计与分析[J]. 光电工程,2015,42(5):88-94.
MA L, CAO D SH, LIU CH ZH. Design and analysis on multi-points flexible supporting structure of large-aperture lens[J]. Opto-Electronic Engineering, 2015, 42(5):88-94.(in Chinese)
赵磊, 彭海峰, 于新峰,等. 具有整体径向挠性的光学元件多点均匀支撑结构[J]. 光电工程,2015,42(10):43-48.
ZHAO L, PENG H F, YU X F, et al.. Lens support structure of multi point equal supporting with wholly radical freedom[J]. Opto-Electronic Engineering, 2015, 42(10):43-48.(in Chinese)
李宇轩, 陈雪, 张雷,等. 大口径空间反射镜Cartwheel型柔性铰链支撑设计[J]. 光学学报,2014,34(6):0622003-0622009.
LI Y X, CHEN X, ZHANG L, et al.. Design of Cartwheel flexural support for a large aperture space mirror[J]. Acta Optica Sinica,2014, 34(6):0622003-0622009.(in Chinese)
曹乃亮, 徐宏, 辛宏伟, 等. 基于NiTi合金丝的反射镜柔性支撑结构的应力补偿[J]. 光学 精密工程,2012,20(10):2161-2169.
CAO N L, XU H, XIN H W, et al.. Stress compensation of flexible supporting structures for mirrors using NiTi shape memory alloy[J]. Opt. Precision Eng., 2012, 20(10):2161-2169.(in Chinese)
曹玉岩, 王志, 周超,等. 压电智能反射面静态形状控制与作动器位置优化[J]. 航空学报,2015,36(2):527-537.
CAO Y Y, WANG ZH, ZHOU CH, et al.. Static shape control of piezoelectric smart reflector and optimization of actuators placement[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):527-537.(in Chinese)
王志, 曹玉岩, 周超,等. 柔性压电智能反射面的静态形状控制[J]. 光学 精密工程,2014,22(10):2715-2724.
WANG ZH, CAO Y Y, ZHOU CH, et al.. Static shape control of flexible piezoelectric smart reflectors[J]. Opt. Precision Eng., 2014, 22(10):2715-2724.(in Chinese)
0
浏览量
608
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构