浏览全部资源
扫码关注微信
1.天津工业大学 电气工程与自动化学院, 天津 300387
2.天津工业大学 电工电能新技术天津重点实验室, 天津 300387
田慧欣(1978-),女,辽宁抚顺人,副教授,2005年、2009年于东北大学分别获得硕士、博士学位,主要从事人工智能软测量及应用研究. E-mail:tianhuixin@tjpu.edu.cn. E-mail:tianhuixin@tjpu.edu.cn.
[ "彭晓(1992-),女,湖北孝感人,硕士研究生,主要研究方向为人工智能软测量方法及光干涉测量的研究。E-mail:853050658@qq.com" ]
收稿日期:2016-07-02,
录用日期:2016-9-1,
纸质出版日期:2016-11-25
移动端阅览
田慧欣, 彭晓, 朱新军, 等. 动态光散射颗粒分布软测量[J]. 光学 精密工程;Editorial Office of Optics and Precision Engineeri, 2016,24(11):2814-2820.
Hui-xin TIAN, Xiao PENG, Xin-jun ZHU, et al. Soft sensing of particle size distribution in dynamic light scattering measurement[J]. Optics and precision engineering, 2016, 24(11): 2814-2820.
田慧欣, 彭晓, 朱新军, 等. 动态光散射颗粒分布软测量[J]. 光学 精密工程;Editorial Office of Optics and Precision Engineeri, 2016,24(11):2814-2820. DOI: 10.3788/OPE.20162411.2814.
Hui-xin TIAN, Xiao PENG, Xin-jun ZHU, et al. Soft sensing of particle size distribution in dynamic light scattering measurement[J]. Optics and precision engineering, 2016, 24(11): 2814-2820. DOI: 10.3788/OPE.20162411.2814.
考虑传统动态光散射颗粒粒度分布测量用的反演算法复杂、精度不够、抗噪能力差,本文基于大数据思想,提出了一种动态光散射颗粒分布软测量方法。该方法通过调节颗粒粒度分布形状参数获得大量自相关函数及其对应颗粒分布的数据;使用这些数据对子学习机进行训练。最后,针对训练数据维数较高的特点对传统Bagging算法进行改进,并利用改进的Bagging集成算法集成子学习机以提高软测量模型的精度及泛化能力。通过模拟单峰数据和对300 nm标准粒径进行软测量开展了验证实验。结果表明,该方法能够较好地测量出不同动态光散射颗粒分布的峰值及分布宽度,模拟单峰数据测量峰值精度可达1 nm,300 nm和503 nm,标准粒径测量精度分别可达3 nm和4 nm,优于一般的反演算法。该软测量方法为动态光散射颗粒分布测量开辟了新的途径。
As the traditional inversion algorithms for particle size distribution measurement by dynamic light scattering show complex computation
lower accuracy and poorer anti-noise capacity
this paper proposes a soft sensing method for particle size distribution based on improved Bagging algorithm by using idea big data. The data of autocorrelation function and particle sizing distribution were obtained by changing the parameters of particle distribution shape. Then the learning machines were trained by the data. Finally
the traditional Bagging algorithm was improved on the basis of the character of high dimensional data. The improved Bagging strategy was used to aggregate the machines for bettering the model accuracy and its generalization performance. A validation experiment was performed by simulating the single peak data and soft sensing for the standard particles with a diameter of 300 nm. Experiment results demonstrate that the proposed method predicts the peak position and the width of particle sizing distribution accurately
and the best accuracy of peak position measurement is 1 nm. Meanwhile
the accuracies for standard particles with diameters of 300 nm and 503 nm are 3 nm and 4 nm
respectively. The proposed method provides a new way for the particle size distribution measurement in dynamic light scattering.
王雅静,郑刚,申晋,等. 用于动态光散射颗粒测量的改进双指数算法[J]. 中国激光,2009,36(s2):173-177.
WANG Y J, ZHENG G, SHEN J, et al.. Improving double exponential algorithm for particle sizing in dynamic light scattering[J]. Chinese Journal of Lasers, 2009,36(s2):173-177.(in Chinese)
ZHU X, SHEN J, WANG Y, et al.. The reconstruction of particle size distributions from dynamic light scattering data using particle swarm optimization techniques with different objective functions[J]. Optics & Laser Technology, 2011, 43(43):1128-1137.
SCHURTENBERGER P, SCHEFFOLD F, SHALKEVICH A, et al.. PCS particle sizing in turbid suspensions:scope and Limitations[J]. Modeling Analysis & Simulation of Computers & Telecommunication Systems, mascots. ie, 2004, 21(1):28-46.
SHI W, SONG J, ZHU X, et al.. Design of weighing transmitter in corn yield measurement system[C]Proceedings of the First Electric Information and Control Engineering, Wuhan, P.R. China:ICEICE, 2011:324-327.
MORRISON I D, GRABOWSKI E F, HERB C A. Improved techniques for particle size determination by quasi-elastic light scattering[J].Langmuir, 2002, 1(4):496-501.
PROVENCHER S W. A constrained regularization method for inverting data represented by linear algebraic or integral equations[J].Computer Physics Communications, 1982, 27(3):213-227.
CLEMENTI L A, VEGA J R, GUGLIOTTA L M, et al.. A Bayesian inversion method for estimating the particle size distribution of latexes from multiangle dynamic light scattering measurements[J]. Chemometrics & Intelligent Laboratory Systems, 2011, 107(1):165-173.
ZHU X, SHEN J, THOMAS J C. Analysis of noisy dynamic light scattering data using constrained regularization techniques[J].Applied Optics, 2012, 51(31):7537-7548.
LIU X Y, SHEN J, THOMAS J C, et al.. Multiangle dynamic light scattering analysis using angular intensity weighting determined by iterative recursion[J]. Applied Optics, 2012, 51(7):846-854.
王雅静,申晋,郑刚,等. Tikhonov正则化与多重网格技术相结合的动态光散射反演[J]. 光学 精密工程,2012,22(5):963-971.
WANG Y J, SHENG G, ZHEN G, et al.. Invertion of dynamic light scattering combining Tikhonov regularization with multi-grid technique[J].Opt. Precision Eng.,2012,22(5):963-971.(in Chinese)
曹丽霞,赵军,孔明,等基于改进的Chahine迭代算法的粒径分布反演[J]. 红外与激光工程,2015,44(9):2837-2843.
CAO L X, ZHAO J, KONG M, et al.. Inversion of particle size distribution based on improved Chahine algorithm[J]. Infrared and Laser Engineering, 2015,44(9):2837-2843.(in Chinese)
杨晖,郑刚,张仁杰. 用动态光散射时间相干度法测量纳米颗粒粒径[J]. 光学 精密工程,2011,19(7):1546-1551.
YANG H, ZHENG G, ZHANG R J. Measurement of nanoparticle sizes by variance of temporal coherence of dynamic light scattering[J].Opt. Precision Eng., 2011,19(7):1546-1551.(in Chinese)
杨晖,郑刚,王雅静. 用动态光散射现代谱估计法测量纳米颗粒[J]. 光学 精密工程,2010,18(9):1996-2001.
YANG H, ZHENG G, WANG Y J. Measurement of nano-particles by dynamic light scattering based on spectral estimation[J].Opt. Precision Eng., 2010,18(9):1996-2001.(in Chinese)
GAO S, SHEN J, THOMAS J C, et al.. Effect of scattering angle error on particle size determination by multiangle dynamic light scattering[J]. Applied Optics, 2015, 54(10):2824-2831.
KIM J, AHN S, LEE H, et al.. Estimation of particle size distribution using photon autocorrelation function from dynamic light scattering considering unknown baseline[J]. Optics Letters, 2013, 38(11):1757-1759.
ClEMENTI L A, VEGA J R, GUGLIOTTA L M. Particle size distribution of multimodal polymer dispersions by multiangle dynamic light scattering. solution of the inverse problem on the basis of a genetic algorithm[J].Particle & Particle Systems Characterization, 2012, 27(5-6):146-157.
TIAN H X, MAO Z Z, WANG A. A new incremental learning modeling method based on multiple models for temperature prediction of molten steel in LF[J].Isij International, 2009, 49(1):58-63.
TIAN H X, MAO Z Z, WANG Y. Hybrid modeling of molten steel temperature prediction in LF[J]. Isij International, 2008, 48(1):58-62.
0
浏览量
583
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构