浏览全部资源
扫码关注微信
1.电子工程学院 脉冲功率激光技术国家重点实验室, 安徽 合肥 230037
2.电子工程学院 红外与低温等离子体安徽省重点实验室, 安徽 合肥 230037
3.安徽建筑大学 电子与信息工程学院, 安徽 合肥 230601
陶会锋(1988-),男,河北邯郸人,博士研究生, 2011年、2014年于电子工程学院分别获得学士、硕士学位,主要从事光学信号获取与处理方面的研究. E-mail:taohfeei@163.com. E-mail:taohfeei@163.com.
[ "杨星(1983-),男,四川都江堰人,助理研究员,2006年、2012年于电子工程学院分别获得学士、博士学位,主要从事模式识别和人工智能方面的研究。E-mail:yangxing1983@163.com" ]
[ "凌永顺(1937-),男,安徽定远人,研究员,院士,1960年于北京师范大学获得学士学位,主要从事光学工程方面的研究。E-mail:Lyseei@163.com" ]
收稿日期:2016-07-14,
录用日期:2016-9-9,
纸质出版日期:2016-11-25
移动端阅览
陶会锋, 杨星, 陈杰, 等. 粒子群优化结构测量矩阵的遥感压缩成像[J]. 光学 精密工程;Editorial Office of Optics and Precision Engineeri, 2016,24(11):2821-2829.
Hui-feng TAO, Xing YANG, Jie CHEN, et al. Structured measurement matrix by particle swarm optimization for remote sensing compressive imaging[J]. Optics and precision engineering, 2016, 24(11): 2821-2829.
陶会锋, 杨星, 陈杰, 等. 粒子群优化结构测量矩阵的遥感压缩成像[J]. 光学 精密工程;Editorial Office of Optics and Precision Engineeri, 2016,24(11):2821-2829. DOI: 10.3788/OPE.20162411.2821.
Hui-feng TAO, Xing YANG, Jie CHEN, et al. Structured measurement matrix by particle swarm optimization for remote sensing compressive imaging[J]. Optics and precision engineering, 2016, 24(11): 2821-2829. DOI: 10.3788/OPE.20162411.2821.
针对块循环测量矩阵应用于遥感压缩成像存在图像重构性能不理想的问题,本文把粒子群智能优化算法引入到块循环矩阵优化中,实现了在保持矩阵结构不变的同时对块循环矩阵的优化。首先以相关系数的Welch界为阈值约束Gram矩阵非对角元素构造目标矩阵;然后以Gram矩阵逼近目标矩阵的方式建立目标函数,将优化对象改为构造块循环矩阵的自由元向量。为提高优化效率,文中采用权重自适应更新的方式提高粒子搜索能力。开展了相关重构对比实验,结果表明,优化后的块循环测量矩阵在保持矩阵结构的同时,降低了与稀疏变换矩阵的相关性,其与稀疏变换矩阵的最大相关系数、平均相关系数和阈值平均相关系数分别降低了0.027 3、0.017 5和0.004 6,得到的结果显示优化的块循环矩阵提高了图像的重构性能。
For non-ideal image construction performance of a block circulant matrix in remote sensing compressive imaging
this paper introduces the particle swarm optimization intelligent algorithm into optimizing the block circulant matrix
meanwhile maintaining the matrix structure. Firstly
the Welch bound of a correlation coefficient is taken as a threshold value to restrain the off-diagonal entries of the Gram matrix and to build a target matrix. Then
the objective function is established by making the Gram matrix approach the target matrix
and the optimized variable is replaced as the free entries to compose the block circulant matrix. To improve the optimized efficiency
the weight adaptive update is used to improve the partical search capacity. A construction comparison experiment is carried out
the results show that the correlation properties of the block circulant matrix with the sparse transform matrix has been reduced while maintaining the matrix structure
and the coefficients for maximum correlation
average correction and threshold average correction have been reduced by 0.027 3
0.017 5 and 0.004 6
respectively. These results show the image construction performance is improved by optimized block circulant matrix.
严奉霞,朱炬波,刘吉英,等. 光学遥感压缩成像技术[J]. 航天返回与遥感, 2014, 35(1):54-62,96.
YAN F X, ZHU J B, LIU J Y, et al.. Compressive imaging techniques in optical remote sensing[J]. Spacecraft Recovery & Remote Sensing, 2014, 35(1):54-62,96.(in Chinese)
范晋祥,岳艳军. 军用红外成像系统新概念新体制的发展[J]. 红外与激光工程,2011, 40(1):1-6.
FAN J X, YUE Y J. Development in new concepts and new schemes for military infrared imaging systems[J].Infrared and Laser Engineering, 2011, 40(1):1-6.(in Chinese)
DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306.
陈涛,李正炜,王建立,等. 应用压缩传感理论的单像素相机成像系统[J]. 光学 精密工程, 2012, 20(11):2523-2530.
CHEN T, LI ZH W, WANG J L, et al.. Imaging system of single pixel camera based on compressed sensing[J]. Opt. Precision Eng., 2012, 20(11):2523-2530.(in Chinese)
王朋,荣志斌,何俊华,等. 基于压缩感知的偏振光成像技术研究[J]. 红外与激光工程,2016, 45(2):0228005.
WANG P, RONG ZH B, HE J H, et al.. Polarization imaging based on compressed sensing theory[J]. Infrared and Laser Engineering,2016, 45(2):0228005.(in Chinese)
MARCIA R F, HARMANY Z T, WILLETT R M. Compressive coded aperture imaging[C]. Proceeding of SPIE, 2009, 72460G.
王忠良,冯燕,肖华,等. 高光谱图像的分布式压缩感知成像与重构[J]. 光学 精密工程, 2015, 23(4):1131-1137.
WANG ZH L, FENG Y, XIAO H, et al.. Distributed compressive sensing imaging and reconstruction of hyperspectral imagery[J]. Opt. Precision Eng., 2015, 23(4):1131-1137.(in Chinese)
CANDES E. The restricted isometry property and its implications for compressed sensing[J]. Comptes Rendus Mathematique, 2008, 346(9):589-592.
ELAD M. Optimized projections for compressed sensing[J]. IEEE Transactions on Signal Processing, 2007, 55(12):5695-5703.
ABOLGHASEMI V, FERDOWSI S, SANEI S. A gradient-based alternating minimization approach for optimization of the measurement matrix in compressive sensing[J]. Signal Processing, 2012, 92(3):999-1009.
郑红,李振,黄盈. 一种基于拟牛顿法的CS投影矩阵优化算法[J]. 电子学报,2014, 42(10):1977-1982.
ZHENG H, LI ZH, HUANG Y. An optimization method for CS projection matrix based on quasi-Newton method[J]. Acta Electronica Sinica,2014, 42(10):1977-1982.(in Chinese)
RAMIREZ A, ARGUELLO H, ARCE G R, et al.. Spectral image classification from optimal coded-aperture compressive measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6):3299-3309.
RAMIREZ A, ARCE G R, SADLER B M. Spectral image unmixing from optimal coded-aperture compressive measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(1):405-415.
郭静波,汪韧. 交替寻优生成元素幅值结合混沌随机相位构造循环测量矩阵[J]. 物理学报,2015, 64(13):1-12.
GUO J B, WANG R. Constructing circulant measurement matrix through alternating optimizing amplitudes together with chaotic stochastic phases of the matrix generating elements[J]. Acta Physica Sinica, 2015, 64(13):1-12.(in Chinese)
KITTLE D, CHOI K, WAGADARIKAR A, et al.. Multiframe image estimation for coded aperture snapshot spectral imagers[J]. Appl. Opt., 2010, 49(36):6824-6833.
STROHMER T, HEATH R W. Grassmannian frames with applications to coding and communication[J]. Applied and Computational Harmonic Analysis, 2003, 14(3):257-275.
WELCH L. Lower bounds on the maximum cross correlation of signals[J]. IEEE Transactions on Information Theory, 1974, 20(3):397-399.
KENNEDY J, EBERⅡART R C. Particle swarm optimization[C]. IEEE International Conference on Neural Networks, 1995, 4:1942-1948.
ZHENG Q, FAN Y. Adaptive inertia weight particle swarm optimization[C]. ICAISC, 2006, 4029:450-459.
0
浏览量
427
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构