浏览全部资源
扫码关注微信
1.武汉大学 测绘遥感信息工程国家重点实验室, 湖北 武汉 430079
2.北京市混合现实与新型显示工程技术研究中心 北京理工大学 光电学院, 北京 100081
3.国家质量监督检验检疫总局 信息中心, 北京 100088
徐军(1970-),男,云南楚雄人,96658部队工程师,现为武汉大学博士研究生,主要从事航天摄影测量、遥感图像处理、打击效果评估等方面的研究. E-mail:junxu70@163.com. E-mail:junxu70@163.com.
[ "付天宇(1991-),男,北京人,博士研究生,2013年于山东大学获得学士学位,主要从事图像配准算法研究。E-mail:fty0718@163.com" ]
收稿日期:2016-07-15,
录用日期:2016-9-7,
纸质出版日期:2016-11-25
移动端阅览
徐军, 付天宇, 杨健, 等. 采用显著性分析与改进边缘方向直方图特征的红外与可见光图像配准[J]. 光学 精密工程, 2016,24(11):2830-2840.
Jun XU, Tian-yu FU, Jian YANG, et al. Registration of infrared image and visible image based on saliency and EOH feature analysis[J]. Editorial office of optics and precision engineeri, 2016, 24(11): 2830-2840.
徐军, 付天宇, 杨健, 等. 采用显著性分析与改进边缘方向直方图特征的红外与可见光图像配准[J]. 光学 精密工程, 2016,24(11):2830-2840. DOI: 10.3788/OPE.20162411.2830.
Jun XU, Tian-yu FU, Jian YANG, et al. Registration of infrared image and visible image based on saliency and EOH feature analysis[J]. Editorial office of optics and precision engineeri, 2016, 24(11): 2830-2840. DOI: 10.3788/OPE.20162411.2830.
为了实现红外图像与可见光图像的信息融合,弥补单一模态图像的不足,提出了一种基于显著性分析与改进的边缘方向直方图EOH(Edge Orientation Histogram)特征的红外与可见光图像配准算法。该算法首先利用显著性分析技术找到可见光图像中的重要信息,得到显著性图;将其与可见光图像融合,实现可见光图像中重要信息的划分。然后,利用自适应FAST(Features from Accelerated Segment Test)算法,探测可见光与红外图像上的特征点;利用改进的EOH,描述特征点。最后,根据描述计算特征点的相似性,在可见光与红外图像上找出对应的特征点,实现红外与可见光图像的匹配。在3种不同情况下对红外与可见光图像数据进行了配准实验。结果表明:在红外图像与可见光图像采集条件相似情况下,特征点正确匹配率为96.55%,而在图像采集条件差异较大的情况下,特征点正确匹配率可达74.21%。该算法可实现红外与可见光图像的精确快速匹配,即使红外图像与可见光图像采集的角度与位置均存在较大差异的情况下,仍可以满足红外与可见光图像匹配对精度和稳定性的要求。
To realize the information fusion of infrared and visible images and make up the deficiency of the single modality image
a new algorithm based on saliency and Edge Orientation Histogram(EOH) features was proposed. Firstly
the saliency analysis was used to find the important information of the visible image and to obtain the saliency map. By fusing it with the visible image
the important information in the visible image was divided. Then
adaptive Features from Accelerated Segment Test(FAST) algorithm was employed in detecting feature points on the visible image and infrared image
and the improved EOH was used to describe the detected feature points. Finally
corresponding feature points were found by calculating the similarity of feature points in the visible and infrared images and the infrared and visible images were matched. An image matching experiments at three conditions were carried out
and the results indicate that when the collection conditions between the infrared and visible images are similar
the feature matching accuracy reaches 96.55%. When the difference of collection conditions between the infrared and visible images is large
the feature matching accuracy still can reach 74.21%. The algorithm realizes fast and accurate matching of infrared and visible images
and meets the requirements of image matching for accuracy and stability
especially under a collection condition that the infrared and visible images are bigger different.
AGUILERA C, BARRERA F, LUMBRERAS F, et al.. Multispectral image feature points[J]. Sensors, 2012, 12(9):12661-12672.
蒋宏,任章. 红外与可见光图像配准和融合中的关键技术[J]. 红外与激光工程,2006,35(增):7-12.
JIANG H, REN ZH. Key technologies in registration and fusion for infrared and visible images[J].Infrared and Laser Engineering, 2006,35(Suppl.):7-12.(in Chinese)
柏连发,韩静,张毅,等. 采用改进梯度互信息和粒子群优化算法的红外与可见光图像配准算法[J]. 红外与激光工程,2012,41(1):248-254.
BAI L F,HAN J, ZHANG Y, et al.. Registration algorithm of infrared and visible images based on improved gradient normalized mutual information and particle swarm optimization[J]. Infrared and Laser Engineering, 2012,41(1):248-254.(in Chinese)
李新娥, 班皓,沙巍,等. 一种大视场TDICCD相机的多传感器图像配准方法[J]. 液晶与显示,2014,29(4):644-648.
LI X E,BAN H, SHA W, et al.. Registration method of large field view and multi-sensor images of TDICCD cameras[J]. Chinese Journal of Liquid Crystals and Display, 2014,29(4):644-648.(in Chinese)
臧丽,王敬东. 基于互信息的红外与可见光图像快速配准[J]. 红外与激光工程,2008,37(1):164-168.
ZANG L, WANG J D. Infrared and visible light image fast registration based on mutual information[J].Infrared and Laser Engineering, 2008,37(1):164-168.(in Chinese)
杨桄,童涛,陆松岩,等. 基于多特征的红外与可见光图像融合[J]. 光学 精密工程,2014,22(2):489-496.
YANG G, TONG T, LU S Y,et al.. Fusion of infrared and visible images based on multi-features[J].Opt. Precision Eng., 2014,22(2):489-496.(in Chinese)
程国华,王阿川,陈舒畅,等. 多源遥感影像高精度自动配准方法研究[J]. 液晶与显示,2016,31(6):604-612.
CHENG G H, WANG A CH, CHEN SH CH, et al.. High accuracy-automatic registration method research on multi-source remote sensing image[J]. Chinese Journal of Liquid Crystals and Display, 2016,31(6):604-612.(in Chinese)
谭东杰,张安. 方向相关与互信息加权组合多模图像配准方法[J]. 红外与激光工程,2013,42(3):836-841.
TAN D J, ZHANG A. Multi-model image registration based on weighted orientation correlation and mutual information[J]. Infrared and Laser Engineering, 2013,42(3):836-841.(in Chinese)
余先川,吕中华,胡丹. 遥感图像配准技术综述[J]. 光学 精密工程,2013,21(11):2960-2972.
YU X CH, LV ZH H, HU D. Review of remote sensing image registration techniques[J].Opt. Precision Eng., 2013,21(11):2960-2972.(in Chinese)
丘文涛,赵建,刘杰. 结合区域分割的SIFT图像匹配方法[J]. 液晶与显示,2012,27(6):827-831.
QIU W T, ZHAO J, LIU J. Image matching algorithm combining SIFT with region segmentation[J].Chinese Journal of Liquid Crystals and Display, 2012,27(6):827-831.(in Chinese)
刘畅,崔桐,贺成龙,等. 基于高曲率特征点匹配的红外可见光图像配准[J]. 指挥信息系统与技术,2016,7(1):13-17.
LIU CH,CUI T, HE CH L, et al.. Infrared-visual image registration based on high-curvature feature matching[J]. Command Information System and Technology, 2016,7(1):13-17.(in Chinese)
李健,王滨海,李丽,等. 基于SIFT的电力设备红外与可见光图像的配准和融合[J]. 光学与光电技术,2012,10(1):75-78.
LI J, WANG B H, LI L, et al.. Electrical equipment IR and visible images registration and fusion based on SIFT[J]. Optic & Optoelectronic Technology, 2012,10(1):75-78.(in Chinese)
YI Z, ZHI G C, YANG X. Multi-spectral remote image registration based on SIFT[J].Electronics Letters, 2008,44(2):107-108.
HUANG Q, GAO Q, YANG J, et al.. Visible and infrared image registration algorithm based on NSCT and gradient mirroring[C]. Conference on Multispectral, Hyperspectral, and Ultra-spectral Remote Sensing Technologys and Applications V, 2014.
GOFERMAN S, ZELNIK-MANOR L, TAL A. Context-aware saliency detection[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2011, 34(10):1915-26.
丁尤蓉,王敬东,邱玉娇,等. 基于自适应阈值的FAST特征点提取算法[J]. 指挥控制与仿真,2013,35(2):47-53.
DING Y R, WANG J D, QIU Y J,et al.. FAST feature detection algorithm based on self-adaptive threshold selection[J]. Command Control & Simulation, 2013,35(2):47-53.(in Chinese)
0
浏览量
374
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构