浏览全部资源
扫码关注微信
1.吉林大学 通信工程学院, 吉林 长春 130012
2.中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
3.中国科学院 电子学研究所, 北京 100080
王勇(1982-),女,山西太原人,博士,讲师,2004年于吉林大学获得工学学士学位,2010年于中国科学院长春光学精密机械与物理研究所获得工学博士学位,主要从事数字图像处理,模式识别等方面的研究. E-mail:wang_yong8205@163.com. E-mail:wang_yong8205@163.com.
[ "王宇庆(1979-),男,吉林长春人,博士,副研究员,2002年于吉林大学通信工程学院获得学士学位,2005年于吉林大学信号与信息处理专业获得硕士学位,2008年于中国科学院长春光学精密机械与物理研究所光学工程专业获得博士学位,主要从事图像质量评价、图像增强、图像融合、FPGA设计,群体智能的研究。E-mail:wyq7903@163.com" ]
收稿日期:2016-06-29,
录用日期:2016-8-13,
纸质出版日期:2016-11-25
移动端阅览
王勇, 王宇庆, 马娇. 改进的响尾蛇双模式细胞模型的图像融合[J]. 光学 精密工程, 2016,24(11):2848-2854.
Yong WANG, Yu-qing WANG, Jiao MA. Improved rattle snake dual mode cell model for image fusion[J]. Editorial office of optics and precision engineeri, 2016, 24(11): 2848-2854.
王勇, 王宇庆, 马娇. 改进的响尾蛇双模式细胞模型的图像融合[J]. 光学 精密工程, 2016,24(11):2848-2854. DOI: 10.3788/OPE.20162411.2848.
Yong WANG, Yu-qing WANG, Jiao MA. Improved rattle snake dual mode cell model for image fusion[J]. Editorial office of optics and precision engineeri, 2016, 24(11): 2848-2854. DOI: 10.3788/OPE.20162411.2848.
由于基于经典Waxman融合模型得到的伪彩色融合图像目标不够清晰,本文提出了一种改进的感受野融合模型。对红外图像和可见光图像分别进行了ON对抗增强和OFF对抗增强;将红外ON对抗增强图像馈入中心-环绕感受野模型的中心兴奋区域,可见光OFF对抗增强图像馈入环绕抑制区,得到融合图像的
B
分量;将红外OFF对抗增强图像馈入中心-环绕感受野模型的环绕抑制区域,可见光ON对抗增强图像馈入中心兴奋区,得到融合图像的
G
分量;将可见光ON对抗增强图像直接作为融合图像的
R
分量;然后,输出RGB伪彩色融合图像。最后,用Waxman方法和本文提出的方法分别对两组源图像进行融合,并用信息熵和平均梯度对融合结果进行了评价。结果表明,采用提出的模型,第一组融合图像的信息熵和平均梯度比Waxman融合模型分别高出0.314 6和0.004 1,第二组融合图像的信息熵和平均梯度比Waxman融合模型分别高出0.255 1和0.002 7。得到的数据显示本文提出的融合模型的融合效果优于经典Waxman模型。
Since the target in a pseudo color fusion image based on the classical Waxman fusion model is not clear
this paper proposes an improved receptive field fusion model. The infrared image and visible light image were respectively ON against enhanced and OFF against enhanced. The infrared ON against enhanced image was fed into an center exciting area of the center-surround receptive field model and the visible light OFF against enhanced image was fed into a surround inhibition zone to get the fusion image
B
component. Then
the infrared OFF against image was fed into a center inhibition zone of the center-surrounding receptive field model and the visible light ON against enhanced image was fed into the center exciting area to get the fusion image of
G
component. Furthermore
the visible ON against enhanced image was directly taken as the
R
component of fused image and to output the pseudo color fusion image. Finally
the fusion experiments were performed for two groups of original images by Waxman model and proposed model and the fusion results were evaluated by the information entropy of fused image and the average gradient. The results show that the first set data by proposed method are higher 0.314 6 and 0.004 1 respectively than that of Waxman fusion model
and that of the second set data by proposed method are higher 0.255 1 and 0.255 1 than that of the Waxman fusion model. It concludes that fusion effect of the proposed fusion model is superior to that of the classical Waxman model.
陈浩,朱娟,刘艳滢,等. 利用脉冲耦合神经网络的图像融合[J]. 光学 精密工程,2010,18(4):995-1001.
CHEN H, ZHU J, LIU Y Y, et al.. Image fusion based on pulse coupled neural network[J].Opt. Precision Eng., 2010,18(4):995-1001.(in Chinese)
AGRAWAL J D, SINGHAI J.Multifocus image fusion using modified pulse coupled neural network for improved image quality[J].IET Image Processing,2010,4(6):443-451.
YOUNGGI B, JAEWAN C, YOUKYUNG H.An area-based image fusion scheme for the integration of SAR and optical satellite imagery[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2013,6(5):2212-2220.
XU M, CHEN H,PRAMOD K V.An image fusion approach based on markov random fields[J].IEEE Transactions on Geoscience and Remote Sensing, 2011,49(12):5116-5127.
REN H ZH, LAN Y H, ZHANG Y.Research of multi-focus image fusion based on m-band multi-wavelet transformation[J].Fourth International Workshop on Advanced Computational Intelligence,Wuhan, Hubei, China, 2011(10):395-398.
倪国强. 基于视觉神经动力学的图像融合与处理技术若干新进展[J]. 激光与红外, 2005,35(11):817-821.
NI G Q.Image fusion technology and its new development[J].Laser & Infrared,2005,35(11):817-821.(in Chinese)
邢素霞,常本康,张俊举. 基于红外目标分割的图像融合方法研究[J]. 视频工程与应用,2009,33(11):110-112.
XING S X,CHANG B K,ZHANG J J.Study of fusion method based on infrared object segmentation[J].Video Application & Project,2009,33(11):110-112.(in Chinese)
陈少华. 基于红外与可见光图像融合的目标跟踪[D]. 南京:南京航空航天大学,2012.
CHEN SH H.Target tracking based on infrared and visible image fusion[D].Nanjing:Nanjing University of Aeronautics,2012.(in Chinese)
荆绍威. 多波段图像仿生假彩色融合技术研究[D]. 太原:中北大学,2009.
JING SH W.Study of bionic false color fusion of multi-band image[D].Taiyuan:North University of China,2009.(in Chinese)
倪国强. 多波段图像融合算法研究及其新发展Ⅰ[J]. 光电子技术与信息,2001,14(5):11-17.
NI G Q.Study on multi-band image fusion algorithms and its progressing(Ⅰ)[J].Optoelectronic Technology & Information,2001,14(5):11-17.(in Chinese)
张彬,许廷发,黄光华,等. 基于小波框架的红外/可见光图像融合[J]. 光学技术,2007,32(3):334-336.
ZHANG B, XU T F, HUANG G H, et al.. Fusion of infrared and visible images based on wavelet frame[J]. Optical Technique,2007,32(3):334-336.(in Chinese)
倪国强,肖蔓君,秦庆旺,等. 近自然彩色图像融合算法及其实时处理系统的发展[J]. 光学学报,2007,27(12):2101-2109.
NI G Q,XIAO M J,QIN Q W, et al.. Development of near natural color image fusion algorithms and real time image fusion system[J]. Acta Optica Sinica,2007,27(12):2101-2109.(in Chinese)
0
浏览量
743
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构