浏览全部资源
扫码关注微信
1.中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2.中国科学院大学, 北京 100049
3.加利福尼亚大学 洛杉矶分校 亨利·萨缪里工程与应用科学学院, 美国, 加利福尼亚州, 洛杉矶市, CA 90095
钱锋(1987-),男,湖南长沙人,博士研究生,2011年于中国科学技术大学获得工学学士学位,主要研究方向为图像处理与目标识别. E-mail:zilgard@126.com. E-mail:zilgard@126.com.
[ "杨名宇(1983-),男,吉林松原人,博士,助理研究员,2006年于吉林大学获得学士学位,2012年于中国科学院自动化研究所获得博士学位,主要从事可见光和红外图像中目标检测、目标分割方面的研究。E-mail:ymy1983@163.com" ]
[ "张晓沛(1994-),男,吉林长春人,本科生,现就读于美国加利福尼亚大学洛杉矶分校,亨利·萨缪里工程与应用科学学院,电子工程专业,主要从事机器视觉、人工智能技术研究。E-mail:zxpmirror1994" ]
收稿日期:2016-03-24,
录用日期:2016-5-23,
纸质出版日期:2016-11-25
移动端阅览
钱锋, 杨名宇, 张晓沛. 基于序列图像提高光斑质心定位精度[J]. 光学 精密工程, 2016,24(11):2880-2888.
Feng QIAN, Ming-yu YANG, Xiao-pei ZHANG. Improvement of localization accuracy of spot centroid based on sequential images[J]. Editorial office of optics and precision engineeri, 2016, 24(11): 2880-2888.
钱锋, 杨名宇, 张晓沛. 基于序列图像提高光斑质心定位精度[J]. 光学 精密工程, 2016,24(11):2880-2888. DOI: 10.3788/OPE.20162411.2880.
Feng QIAN, Ming-yu YANG, Xiao-pei ZHANG. Improvement of localization accuracy of spot centroid based on sequential images[J]. Editorial office of optics and precision engineeri, 2016, 24(11): 2880-2888. DOI: 10.3788/OPE.20162411.2880.
针对激光模拟射击系统对激光光斑进行快速、高精度质心定位的要求,提出了一种基于视频序列图像的光斑检测与高精度质心定位方法。该方法首先利用帧间差分图像和噪声估计参数对射击突发事件进行检测;然后利用噪声估计方法确定光斑的分割阈值,结合形态学滤波对目标光斑和背景噪声进行有效分割,提取光斑区域,同时降低窗口内外噪声。最后,用4帧差分图像合成1帧高分辨率的图像来抑制图像噪声和计算误差的影响,实现光斑质心的高精度定位。实验结果表明,本文方法的光斑质心定位精度与稳定性均优于传统的方法;其中光斑质心定位精度达到了亚像素级别,稳定性度量平均值为0.000 49,优于传统方法的0.002 97。得到的结果显示,提出的方法有助于提升激光射击系统的性能。
To meet the requirements of a laser firing simulation system for high speed and high accurate location of laser spot centroids
a novel method based on the video sequential images is proposed for the spot detection and spot centroid location. The method firstly detects the firing events by the subtraction image between every two sequential frames and by the estimated noise parameters. Then
it uses the noise estimation to determine the segmenting threshold of the spot and combines morphologic filtering techniques to extract the spot region out from the background
meanwhile reducing the noises inside and outside of the window. Finally
one high resolution image is generated from 4 subtraction images to decrease the image noise and computing errors and to improve the locating accuracy of the spot centroid. Experimental results indicate that the spot centroid localization precision of laser spot and the average measurement stability of the proposed method are superior to that of the conventional method. The spot centroid localization precision has been reached to sub-pixel level
and the average measurement stability is 0.000 49
far better than the conventional 0.002 97. The method in this study is conductive to improving the performance of laser firing simulation systems.
ROHM H P. Laser shooting system, United States:US 2007/0021220 A1[P]. Jan. 25, 2007.
KENDIR T, SHECHTER M, CLARK J. Firearm laser training system and method facilitating firearm training for extended range targets with feedback of firearm control, United States:US 7329127 B2[P]. Feb. 12, 2008.
HASEBE H, OKI M. Laser gun and shooting system for the same, United States:US 6962532 B2[P]. Nov. 8, 2005.
吴喜广. 红外激光打靶训练系统的设计[D]. 兰州:兰州大学,2012.
WU X G. Design of the infrared laser shooting training system[D]. Lanzhou:University of Lanzhou, 2012.(in Chinese)
王辉. 激光模拟打靶系统设计与靶环图像处理技术研究[D]. 太原:中北大学,2010.
WANG H. Design on laser simulation shooting system and research on target ring image processing technology[D]. Taiyuan:North University of China, 2010.(in Chinese)
张强,李静,应自炉,等. 一种基于图像处理的激光打靶仪设计[J]. 现代电子技术, 2012, 35(12):90-94.
ZHANG Q, LI J, YING Z L, et al.. Design of laser targeting device based on image processing[J]. Modern Electronics Technique, 2012, 35(12):90-94.(in Chinese)
李艳晓,张磊,张红刚,等. 基于双CCD探测的外场高精度激光光斑测试技术[J]. 红外与激光工程, 2015, 44(1):59-64.
LI Y X, ZHANG L, ZHANG H G, et al.. Technology of high precision test for laser spot based on double CCD detection in the outfield[J]. Infrared and Laser Engineering, 2015, 44(1):59-64.(in Chinese)
张宁,沈湘衡. 采用CCD相机测量目标靶形心位置精度的方法[J]. 红外与激光工程, 2015, 44(1):279-284.
ZHANG N, SHEN X H. Verification method for measuring accuracy of shape center location of target by using CCD camera[J]. Infrared and Laser Engineering, 2015, 44(1):279-284.(in Chinese)
BAKER K L,MOALLEM M M. Iteratively weighted centroiding for Shack-Hartmann wave-front sensors[J].Optics Express,2007,15(8):5147-5159.
MEJÍA Y. Extrapolation, interpolation, and identification of spots in Hartmann patterns[J]. Applied Optics, 2014, 53(26):6073-6082.
HANCOCK B R, STIRBL R C, CUNNINGHAM T J, et al.. CMOS active pixel sensor specific performance effects on star tracker/imager position accuracy[J].SPIE, 2001, 4284:43-53.
梁春,廖文和,沈建新,等. Hartmann-Shack波前传感器的自适应质心探测方法[J]. 中国激光,2009,36(2):430-434.
LIANG CH, LIAO W H, SHEN J X,et al.. An adaptive detecting centroid method for Hartmann-Shack wavefront sensor[J]. Chinese Journal of Lasers, 2009, 36(2):430-434.
BAIK S H, PARK S K, KIM C J, et al.. A center detection algorithm for Shack-Hartmann wavefront sensor[J]. Optics & Laser Technology, 2007, 39:262-267.
YIN X M, LI X, ZHAO L P, et al.. Adaptive thresholding and dynamic windowing method for automatic centroid detection of digital Shack-Hartmann wavefront sensor[J]. Applied Optics, 2009, 48(32):6088-6098.
李振伟,张涛,张楠,等. 暗弱空间目标的高精度定位[J]. 光学 精密工程,2015,23(9):2627-2634.
LI ZH W, ZHANG T, ZHANG N, et al.. High precision orientation of faint space objects[J].Opt. Precision Eng., 2015, 23(9):2627-2634.(in Chinese)
穆绍硕,张叶,贾平. 基于自学习局部线性嵌入的多幅亚像元超分辨成像[J]. 光学 精密工程,2015,23(9):2677-2686.
MU SH SH, ZHANG Y, JIA P. Super-resolution imaging of multi-frame sub-pixel images based on self-learning LLE[J].Opt. Precision Eng., 2015, 23(9):2677-2686.(in Chinese)
田浩南, 张叶. 基于边缘及特征点匹配的立体图像质量评价[J]. 液晶与显示,2015, 30(4):666-672.
TIAN H N, ZHANG Y. Quality evaluation of stereo image based on edge and characteristic point matching[J]. Chinese Journal of Liquid Crystals and Displays, 2015, 30(4):666-672.(in Chinese)
刘久文, 潘峰, 李军. 结合图像边缘检测和最小误差替换的隐写方案[J]. 液晶与显示,2015, 30(1):151-156.
LIU J W, PAN F, LI J. Steganography based on edge detection and minimum error replacement[J]. Chinese Journal of Liquid Crystals and Displays, 2015, 30(1):151-156.(in Chinese)
金占雷. CCD光斑质心算法的误差分析[J]. 航天返回与遥感,2011, 32(1):38-44.
JIN ZH L. Error analysis of centroid algorithm based on CCD[J]. Spacecraft Recovery & Remote Sensing, 2011, 32(1):38-44.(in Chinese)
王薇, 陈怀新. 基于优化探测窗口的光斑质心探测方法[J]. 强激光与粒子束,2006, 18(8):1249-1252.
WANG W, CHEN H X. New method for centroid detecting of focal spot based on optimizing detecting window[J]. High Power Laser and Particle Beams, 2006, 18(8):1249-1252. (in Chinese)
OTSU N. A threshold selection method from gray level histogram[J]. IEEE Transactions on Systems, Man and Cybernetics, 1979,9(1):62-66.
VELASCO F R D. Thresholding using the ISODATA clustering algorithm[J]. IEEE Transaction on Systems, Man and Cybernetics, 1980, 10(11):771-774.
GONZALEZ R C, WOODS R E. Digital Image Processing(2nd Edition)[M]. Beijing:Publishing House of Electronics Industry, 2007, 520-525.
夏爱利,马彩文. 基于图像处理技术的光斑质心高精度测量[J]. 光电子·激光,2011, 22(10):1542-1545.
XIA A L, MA C W. Measurement of focal spot centroid based on image processing[J]. Journal of Optoelectronics Laser, 2011, 22(10):1542-1545.(in Chinese)
潘波,杨根庆,刘勇. 星点质心定位算法最优门限研究[J]. 光学 精密工程,2008,16(9):1787-1792
PAN B,YANG G Q,LIU Y. Study on optimization threshold of centroid algorithm[J].Opt. Precision Eng., 2008,16(9):1787-1792.(in Chinese)
GUO W J, ZHAO L P, TONG CH SH,et al.. Adaptive centroid-finding algorithm for freeform surface measurements[J]. Applied Optics, 2013, 52(10):D75-D83.
0
浏览量
268
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构