浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所 应用光学国家重点实验室,吉林 长春,130033
2. 中国科学院 深圳先进技术研究院,广东 深圳,518055
3. 中国科学院 大连化学物理研究所 化学激光重点实验室,辽宁 大连,116023
收稿日期:2016-05-16,
修回日期:2016-06-08,
纸质出版日期:2016-11-14
移动端阅览
鲁远甫, 谢仕永, 刘艳等. 高功率窄线宽微秒脉冲1 064 nm环形腔激光[J]. 光学精密工程, 2016,24(10s): 35-40
LU Yuan-fu, XIE Shi-yong, LIU Yan etc. High-power narrow linewidth microsecond pulse 1064 nm ring laser[J]. Editorial Office of Optics and Precision Engineering, 2016,24(10s): 35-40
鲁远甫, 谢仕永, 刘艳等. 高功率窄线宽微秒脉冲1 064 nm环形腔激光[J]. 光学精密工程, 2016,24(10s): 35-40 DOI: 10.3788/OPE.20162413.0035.
LU Yuan-fu, XIE Shi-yong, LIU Yan etc. High-power narrow linewidth microsecond pulse 1064 nm ring laser[J]. Editorial Office of Optics and Precision Engineering, 2016,24(10s): 35-40 DOI: 10.3788/OPE.20162413.0035.
为了实现高效和频的高功率准连续波钠信标激光,对抑制驰豫振荡的高功率窄线宽微秒脉冲1064 nm环形腔激光进行了研究。采用热近非稳腔设计优化了三镜环形腔的腔镜曲率,腔内插入标准具压窄激光线宽。1 064 nm薄膜偏振片用作环形腔的输出镜,与半波片配合实现输出耦合率的连续可调。在808 nm半导体激光泵浦功率为175 W的条件下,获得了输出功率为42 W、光束质量因子
M
2
=1.26、线宽为0.2 GHz的1 064 nm激光输出,重复频率为800 Hz,脉冲宽度为100
μ
s。腔内插入1 064 nm的倍频晶体KTiOPO
4
,利用二次谐波效应使高强度的尖峰脉冲序列快速减弱,实现了激光脉冲驰豫振荡的有效抑制。整个系统结构简单、易实现,为获得消驰豫振荡的准连续波1 064 nm激光提供了实用有效的技术手段。
In order to realize high-power quasi-continuous wave sodium beacon laser with high-efficiency sum frequency
1064 nm ring-cavity laser of high-power narrow-linewidth microsecond pulse which restrains relaxation oscillation was studied. A thermally near unstable cavity was adoped to optimize curvature of three-scope ring endoscope
inserting an etalon in cavity to narrow laser linewidth. Using a 1064 nm thin-film polaroid as output mirror of ring cavity and a half wave plate
a continuous adjustable output coupling ratio was realized. Under the condition of 808 nm semiconductor laser with pumping power of 175 W
1 064 nm laser output with output power of 42 W
beam quality factor
M
2
=1.26
linewidth of 0.2 GHz was acquired. Its repetition frequency is 800 Hz and pulse width is 100
μ
s. The relaxation oscillation of laser pulse was effectively suppressed by inserting 1 064 nm frequency-doubling crystal KTiOPO4 in cavity and using second harmonic effect to rapid weaken high-strength spike pulse sequence.The whole system is pretty simple
which provides the practical and effective technical method for obtaining 1064 nm laser of quasi-continuous wave without relaxation oscillation.
KOVALCHUK E V, DEKORSY D, LVOVSKY A I, et al.. High-resolution Doppler-free molecular spectroscopy with a continuous wave optical parametric oscillator[J]. Optics Letters, 2001, 26(18):1430-1432.
WU L A, XIAO M, KIMBLE H J. Squeezed states of light from an optical parametric oscillator[J]. J Opt Soc Am B, 1987, 4(10):1465-1475.
WILLKE B. GEO600:status and plans[J]. Class Quantum Grav., 2007, 24(19):S389-S397.
KUHR S, ALT W, SCHRADER D, et al.. Deterministic delivery of a single atom[J]. Science, 2001, 293(5528):278-280.
刘杰,王建立,吕天宇,等. 全固态589 nm激光器及其钠导星激发亮度[J]. 光学精密工程, 2014, 22(12):3199-3204. LIU J, WANG J L, LÜ T Y, et al.. All-solid-state 589 nm laser and the brightness of excited sodium guide star[J]. Opt. Precision Eng., 2014, 22(12):3199-3204. (in Chinese)
BIENFANG J C, DENMAN C A, GRIME B W, et al.. 20 W of continuous-wave sodium D2 resonance radiation from sum-frequency generation with injection-locked lasers[J]. Optics Letters, 2003, 28(22):2219-2221.
FUGATE R Q, DENMAN C A, HILLMAN P D, et al.. Progress toward a 50-watt facility-class sodium guide star pump laser[J]. SPIE, 2004, 5490:1010-1020.
TAYLOR L R, FENG Y, CALIA D B. 50W CW visible laser source at 589 nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers[J].Optics Express, 2010, 18(8):8540-8555.
许祖彦,谢仕永,薄勇,等. 30 W级第二代钠信标激光器研究[J]. 光学学报, 2011, 31(9):101-103. XU Z Y, XIE S Y, BO Y,et al.. Investigation of 30 W-class second-generation sodium beacon laser[J]. Acta Optica Sinica, 2011, 31(9):101-103. (in Chinese)
PANARELLA E, BRADLEY L. Controlled timewise redistribution of laser energy[J]. IEEE J. Quantum Electronics, 1975, 11(5):181-85.
PANTELL R H, WARSZAWSKI J. Laser power stabilization by means of nonlinear absorption[J]. Applied Physics Letters, 1967, 11(7):213-15.
SANDOVAL R P. Resonator configuration for the suppression of relaxation oscillations in a long-pulsed Nd:YAG laser[J]. Applied Optics, 1979, 18(9):1328-33.
JEYS T H. Suppression of laser spiking by intracavity second harmonic generation[J]. Applied Optics, 1991, 30(9):1011-1013.
OKHAPKIN M V, SKVORTSON M N, BELKIN A M, et al.. Tunable single-frequency diode-pumped Nd:YAG ring laser at 1064/532 nm for optical frequency standard applications[J]. Optics Communications, 2002, 203(5):359-362.
WANG P Y, XIE SH Y, BO Y, et al.. 33Wquasi-continuous-wave narrow-band sodium D2a laser by sum-frequency generation in LBO[J]. Chinese Physics B, 2014, 23(9):094208.
XI W Q, ZHAO J Y, ZHANG K SH. A high-power continuous-wave laser-diode end-pumped Nd:YVO4 laser of single-frequency operation[J]. Chinese Physics Letters, 2005, 22(5):1144-1146.
JOHNSON R P.Spike suppression and longitudinal mode selection in a 1.319 mm Nd:YAG laser by high-efficiency intracavity frequency doubling[J]. Optics & Laser Technology, 2008, 40:1078-1081.
王鹏远. 高功率准连续微秒脉冲全固态钠信标激光技术研究及应用[D].北京:中科院理化技术研究所,2014. WANG P Y. Investigation and Application of High Power Quasi-continous-wave Microsecond Pulse Diode-pumped Solide-state Sodium Beacon Laser Technology[D].Beijing:Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 2014. (in Chinese)
0
浏览量
537
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构