浏览全部资源
扫码关注微信
1. 江苏大学 机械工程学院,江苏 镇江,212013
2. 江苏科技大学 机械工程学院,江苏 镇江,212000
收稿日期:2016-05-29,
修回日期:2016-06-15,
纸质出版日期:2016-11-14
移动端阅览
樊玉杰, 郭二彬, 戴毅斌等. 激光冲击强化高速钢W9Cr3Mo4V响应[J]. 光学精密工程, 2016,24(10s): 94-102
FAN Yu-jie, GUO Er-bin, DAI Yi-bin etc. Response of laser shock on high speed steel W9Cr3Mo4V[J]. Editorial Office of Optics and Precision Engineering, 2016,24(10s): 94-102
樊玉杰, 郭二彬, 戴毅斌等. 激光冲击强化高速钢W9Cr3Mo4V响应[J]. 光学精密工程, 2016,24(10s): 94-102 DOI: 10.3788/OPE.20162413.0094.
FAN Yu-jie, GUO Er-bin, DAI Yi-bin etc. Response of laser shock on high speed steel W9Cr3Mo4V[J]. Editorial Office of Optics and Precision Engineering, 2016,24(10s): 94-102 DOI: 10.3788/OPE.20162413.0094.
为了研究激光冲击强化高速钢W9Cr3Mo4V材料的响应性能,采用不同的激光能量、冲击次数对高速刚表面进行激光冲击强化处理。实验结果表明,激光冲击区域产生圆形凹坑变形,凹坑深度变形量随激光能量和冲击次数的增加而增大。激光冲击影响区域表面残余压应力,并随着激光能量和冲击次数的增加而增加,但冲击次数超过3次后,最大残余压应力趋于饱和状态,应力增幅并不明显。凹坑中心纳米硬度和弹性模量,随着激光能量和冲击次数的增加而增大,与基体相比,最大分别增加了15.04%和14.35%。受冲击波的力效应沿深度方向的影响,冲击区域表层晶粒尺寸最小约10
μ
m,随着距离的增加,晶粒尺寸逐渐增大。根据晶粒尺寸的变化情况,将冲击影响区域分为5层:严重塑性变形层、塑性变形层、轻微塑性变形层、过渡层和基体。激光冲击能有效细化高速钢W9Cr3Mo4V表层晶粒,提高冲击区域表层的力学性能,为激光冲击强化高速钢刀具提供指导。
The response properties of laser shock on high-speed steel W9Mo3Cr4V were studied experimentally by adopting different laser energies and shock frequencies. The experiment result indicates that the area under laser shock produces round pits
depth of which will increase as the laser energy and shock frequency increase. The surface residual stress exists in the surface of the impacted area under laser shock
and such residual stress increases as the laser energy and shock frequency increase; but the maximum residual stress will approach saturation after three times of shock
without obvious stress amplification. The nano-hardness and elasticity modulus in the pimple center increase as the laser energy and shock frequency increase
and compared with the matrix
the maximum increases for the nano-hardness and elasticity modulus are respectively 15.04% and 14.35%. Impacted by the force effect of shock wave along the depth direction
the grain size in laser shock impacted area is approximately 10
μ
m as a minimum
which increases with the increase of distance. According to the variation of grain sizes
the impacted area can be divided into 5 layers:severe plastic deformation layer
plastic deformation layer
slight plastic deformation layer
transition layer and the matrix. Laser chock can effectively refine surface layer grain of the high-speed steel W9Cr3Mo4V and improve the mechanical property in surface layer of the impacted area
thus providing guidance for the fabrication of laser shock strengthening high-speed steel tools.
杨亚辉. 表面强化技术在金属切削刀具制造过程中的应用研究[J]. 机械制造, 2015,53(11):41-44. YANG Y H. The application of surface strengthening technology in the process of metal cutting tool manufacturing[J].Machinery Manufacture, 2015, 53(11):41-44. (in Chinese)
黄志花. 涂层刀具专利技术综述[J]. 科学与财富, 2015(11):151-152. HUANG ZH H. Reviewed of coated tools patent technology[J].Sciences & Wealth, 2015(11):151-152. (in Chinese)
汪瑞军,黄小鸥,刘军,等. 电火花表面强化技术国内外研究应用综述[C]. 第八届国际热喷涂研讨会(ITSS'2005)暨第九届全国热喷涂年会(CNTSC'2005)论文集,2005:86-91. WANG R J, HUANG X O, LIU J, et al.. Review of Edm surface strengthening technology in domestic and overseas[C]. ITSS'2005 and CNTSC'2005, 2005:86-91. (in Chinese)
徐跃增. 高速钢刀具表面PCVD复合渗镀强化研究[J]. 铸造技术, 2015, 36(3):666-668. XU Y Z. Study on PCVD composite diffusion strengthening on high speed steel tool surface[J]. Foundry Technology, 2015, 36(3):666-668. (in Chinese)
KAWASEGI N, SUGIMORI H, MORIMOTO H, et al.. Development of cutting tools with microscale and nanoscale textures to improve frictional behavior[J].Precision Engineering, 2009, 33(3):248-254.
SAWKA A, KWATERA A, WOZNICKI A. Cemented carbide cutting tools life with nanocrystalline Al2O3 layer deposited by MOCVD[J].Archives of Civil and Mechanical Engineering, 2016, 16(3):351-364.
SHUHO K, KENICHI I, HIROSHI U. Damage of physical vapor deposition coatings of cutting tools during alloy 718 turning[J].Precision Engineering, 2016, 44:41-54.
乔红超,赵吉宾,陆莹. 激光诱导冲击波应用技术研究现状[J]. 表面技术, 2016, 45(1):1-6,48. QIAO H CH, ZHAO J B, LU Y. Current status of laser-induced shock wave application technology[J].Surface Technology, 2016, 45(1):1-6,48. (in Chinese)
SHENG J, ZHOU J Z, HUANG S. Characterization and tribological properties of micro-dent arrays produced by laser peening on ZCuSn10P1 alloy[J].International Journal of Advanced Manufacturing Technology, 2015, 76:1285-1295.
SALIMIANRIZI A, FOROOZMEHR E, BADROSSAMAY M,et al.. Effect of laser shock peening on surface properties and residual stress of Al6061-T6[J].Optics and Lasers in Engineering, 2015, 77(2):112-117.
FAIRLAND B P, WILCOX B A, GALLAGHER, et al.. Laser shock induced microstructural and mechanical property changes in 7075 aluminum[J].Appl. Phys., 1972, 43:3893-3895.
BEETHE L, FABBRO R. Shock wave from a water-confined laser-generated plasma[J].J. Appl. Phs., 1997, 82(6):2826-2832.
乔红超,赵亦翔,赵吉宾,等. 激光冲击强化对TiAl合金组织和性能的影响[J]. 光学精密工程,2014,22(7):1767-1773. QIAO H CH, ZHAO Y X, ZHAO J B.Effect of laser penning on microstructures and properties of TiAl alloy[J]. Opt. Precision Eng., 2014, 22(7):1767-1773. (in Chinese)
杜金星,柏云,王匀. 激光冲击对热作模具钢残余应力场的影响规律研究[J]. 热加工工艺, 2016,45(2):134-137. DU J X, BAI Y, WANG Y. Research on influence regulations of laser shock processingon residual stress field of hot work tool steel[J].Hot Working Technology, 2016, 45(2):134-137. (in Chinese)
LU J Z, LUO K Y, ZHANG Y K.Grain refinement mechanism of multiple laser shock pro-cessing impacts on ANSI 304 stainless steel[J]. Acta Mater., 2010, 58(16):5354-5362.
CHU J P, RIGSBEE J M,BANAS G, et al.. Laser-shock processing effects on surface microstructure and mechanical properties of low carbon steel[J]. Materials Science & Engineering, 1999, 260(1):260-268.
樊玉杰,周建忠,黄舒,等. 激光微喷丸强化纯铜表面的纳米压痕分析[J]. 中国激光, 2011,38(6):230-234. FAN Y J, ZHOU J ZH, HUANG SH. Research on mechanical response of copper treated by micro laser shock penning using nanoindentation technique[J].Chinese Journal of Lasers, 2011, 38(6):230-234. (in Chinese)
LUO K Y, LU J Z, ZHANG Y K.Effects of laser shock processing on mechanical properties and micro-structure of ANSI 304 austenitic stainless steel[J]. Mater. Sci. Eng. A, 2011, 528(13):4783-4788.
GUTIERREZ-URRUTIA, ZAEFFERER S, RAABE D. The effect of grain size and grain orientation on deformation twinning in a Fe-22 wt.% Mn-0.6 wt.% C TWIP steel[J].Materials Science &Engineering A, 2010, 527(15):3552-3560.
0
浏览量
375
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构