浏览全部资源
扫码关注微信
重庆大学 光电工程学院 光电技术及系统教育部重点实验室 重庆,400044
收稿日期:2016-05-28,
修回日期:2016-06-16,
纸质出版日期:2016-11-14
移动端阅览
刘显明, 曹雪颖, 李相迪等. 蓝光辐照对PET和SiO<sub>2</sub>基石墨烯导电性能的影响[J]. 光学精密工程, 2016,24(10s): 162-168
LIU Xian-ming, CAO Xue-ying, LI Xiang-di etc. Electrical conductivity of graphene film electrodes on PET and SiO<sub>2</sub> substrate under blue light irradiation[J]. Editorial Office of Optics and Precision Engineering, 2016,24(10s): 162-168
刘显明, 曹雪颖, 李相迪等. 蓝光辐照对PET和SiO<sub>2</sub>基石墨烯导电性能的影响[J]. 光学精密工程, 2016,24(10s): 162-168 DOI: 10.3788/OPE.20162413.0162.
LIU Xian-ming, CAO Xue-ying, LI Xiang-di etc. Electrical conductivity of graphene film electrodes on PET and SiO<sub>2</sub> substrate under blue light irradiation[J]. Editorial Office of Optics and Precision Engineering, 2016,24(10s): 162-168 DOI: 10.3788/OPE.20162413.0162.
石墨烯透明电极在光照下可能会产生电学性能变化,对于LED背光源,蓝光成分比重较大。为了研究石墨烯在蓝光辐照下的电学性能,以不同基底的石墨烯电极为样品,包括分别代表柔性和硬质应用的PET和SiO
2
基石墨烯,介绍了这两种基底的石墨烯透明电极在不同功率蓝光辐照下,在不同环境气氛中的导电性能变化,并分析了掺杂对石墨烯导电稳定性的影响。实验结果表明:不同基底石墨烯样品的导电性能在蓝光辐照下均会发生变化,其变化程度和速度受光照时间、环境气氛、掺杂和辐照功率的共同影响。SiO
2
基、PET基在9 mW光源的长期照射下,未掺杂真空环境辐射10 h时相对电阻的变化分别为29.5%和10.1%,掺杂后降至13.0%和4.6%,大气环境中降至7.1%和2.7%。可见气体分子和AuCl
3
掺杂剂的吸附作用会减小电导变化,提高石墨烯的电阻稳定性。该研究结果可为改善石墨烯透明电极长期应用的稳定性提供参考。
Light irradiation could result in the decline of electric property of transparent graphene electrodes
which was dominated by blue light for LED backlight. In order to study the stability of the electric properties under blue light irradiation
graphene electrodes with different substrates were taken as the samples
including the flexible PET-based and inflexible SiO
2
-based graphenes. Then the conductivity of the graphenes under blue light irradiation of different powers and different environmental atmospheres were investigated
and the impact of doping on the conductivity stability was analyzed. The results indicate that the conductivity of graphene with different substrates
changes in blue light
with the amplitude and speed of the variation subjected to the irradiation time
environmental atmosphere
doping and irradiation power. Under the 10 h long-term irradiation
the relative resistances of the PET-based and SiO
2
-based graphenes without dopants in vacuum decrease by 29.5% and 10.1% respectively. After doping
those values drop to 13.0% and 4.6% respectively in the same environment while decline to 7.1% and 2.7% respectively in the ambient environment. The absorption of gas molecules and AuCl
3
dopant can reduce such conductivity change and improve the resistance stability of graphene. The research provides significance reference for the stability enhancement of the long-term application of transparent graphene electrodes.
PERREAULT F, FARIA A F D, ELIMELECH M. Environmental applications of graphene-based nanomaterials[J].Chemical Society Reviews, 2015, 44(16):5861-5896.
WANG X L, SHI G Q. Flexible graphene devices related to energy conversion and storage[J]. Energy Environ. Sci., 2015, 8(3):790-823.
LIU J H, YI Y H, ZHOU Y H, et al.. Highly stretchable and flexible graphene/ITO hybrid transparent electrode[J]. Nanoscale Research Letters, 2016, 11(1):108-105.
SONG Y, FANG W J, BREBES R, et al.. Challenges and opportunities for graphene as transparent conductors in optoelectronics[J]. Nano Today, 2015, 10(6):681-700.
IQBAL M Z, SIDDIQUE S, W IQBAL M, et al..Formation of p-n junction with stable p-doping in graphene field effect transistors using deep UV irradiation[J]. Journal of Materials Chemistry, 2013, 1(18):3078-3083.
SHI Y M, FANG W J, ZHANG K K,et al.. Photoelectrical response in single-layer graphene transistors.[J]. Small, 2009, 5(17):2005-2011.
LIN J, ZHONG J B, KYLE JR. Molecular absorption and photodesorption in pristine and functionalized large-area graphene layers.[J]. Nanotechnology, 2011, 22(35):355701-355706.
SUN P Z, MA R Z, OSADA M,et al..The formation of graphene-titania hybrid films and their resistance change under ultraviolet irradiation[J]. Carbon, 2012, 50(12):4518-4523.
LI W, LIANG Y R, YU D M, et al.. Ultraviolet/ozone treatment to reduce metal-graphene contact resistance[J]. Applied Physics Letters, 2013, 102(18):183110-183110-5.
LIN Y J, ZENG J J. Tuning the work function of graphene by ultraviolet irradiation[J]. Applied Physics Letters, 2013, 102(18):183120-183120-4.
KIM M, SAFRON N S, HUANG C H, et al.. Light-driven reversible modulation of doping in graphene.[J]. Nano Letters, 2012, 12(1):182-187.
SONG H, CHUNHUA L, GUOHONG Z, et al..Transparent YAg:Ce ceramics for WLEDs with high CRI:Ce3+ concentration and sample thickness effects[J]. Ceramics International, 2016, 6(42):6935-6941.
VERGUTS K, VERMEULEN B, VRANCKEN N,et al.. Epitaxial Al2O3(0001)/Cu(111) template development for CVD graphene growth[J]. Journal of Physical Chemistry C, 2016, 120(1):297-304.
LI X, COLOMBO L G, RUOFF R S. Synthesis of graphene films on copper foils by chemical vapor deposition[J]. Advanced Materials, 2016, 28(29):6247-6252.
ABDULLAHALGALIB M, HOU B, SHAHRIAD T, et al..Stability of few layer graphene films doped with gold (Ⅲ) chloride[J]. Applied Surface Science, 2016, 366:78-84.
ZHANG S J, LIN S S, LI X Q, et al.. Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells[J]. Nanoscale, 2016. 8(1):226-232.
彭进明. 基底对物理法制备石墨烯形貌的影响研究[D].哈尔滨:哈尔滨工业大学,2011. PENG J M. Effect of the Substrate on the Morphology of the Graphene Prepared by Physical Method[D]. Harbin:Harbin Institute of Technology,2011. (in Chinese)
WANG Q H, JIN Z, KIM K K, et al.. Understanding and controlling the substrate effect on graphene electron-transfer chemistry via reactivity imprint lithography[J]. Nature Chemistry, 2012, 4(9):724-732.
OH S, YANG G, KIM J. AuCl3 chemical doping on defective graphene layer[J]. Journal of Vacuum Science & Technology A Vacuum Surfaces & Films, 2015, 33(2):021502-021502-5.
0
浏览量
218
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构