浏览全部资源
扫码关注微信
辽宁工业大学 机械工程与自动化学院,辽宁 锦州,121001
收稿日期:2016-05-27,
修回日期:2016-06-19,
纸质出版日期:2016-11-14
移动端阅览
陈雪叶, 沈杰男, 胡增亮等. CO<sub>2</sub>激光在PET基板加工微通道的工艺优化[J]. 光学精密工程, 2016,24(10s): 224-228
CHEN Xue-ye, SHEN Jie-nan, HU Zeng-liang etc. Optimization of processing micro-channels with CO<sub>2</sub>-laser on polyethylene terephthalate(PET) sheet[J]. Editorial Office of Optics and Precision Engineering, 2016,24(10s): 224-228
陈雪叶, 沈杰男, 胡增亮等. CO<sub>2</sub>激光在PET基板加工微通道的工艺优化[J]. 光学精密工程, 2016,24(10s): 224-228 DOI: 10.3788/OPE.20162413.0224.
CHEN Xue-ye, SHEN Jie-nan, HU Zeng-liang etc. Optimization of processing micro-channels with CO<sub>2</sub>-laser on polyethylene terephthalate(PET) sheet[J]. Editorial Office of Optics and Precision Engineering, 2016,24(10s): 224-228 DOI: 10.3788/OPE.20162413.0224.
为了提高微通道表面的加工质量,研究了CO
2
激光在聚乙烯对苯二甲酸酯(PET)基板上加工微通道的工艺。通过正交试验法研究了激光功率、加工速度、通道长度和加工次数对微通道宽度的影响,并且进行了工艺参数优化。然后,通过金相显微镜和粗糙度测量仪对加工结果进行了实验分析。结果表明,正文试验获得的最佳加工参数如下:激光功率为10 W,扫描速度为6 mm/s,通道长度为80 mm,加工次数为3次。在此加工参数下对通道表面的粗糙度(Ra)的算数平均值可以达到170 nm。由此证明使用CO
2
激光在PET基板上加工微米级通道的方法是完全可行的。
In order to improve the processing quality of micro-channels
the fabrication technology of micro-channels on polyethylene terephthalate(PET) substrate using CO
2
laser was researched. The effects of the processing parameters
including laser power
processing speed
channel length and processing times
on the width of micro-channel were analyzed and optimized through orthogonal tests. Furthermore
the processing results under the optimal parameters were tested by using metallographic microscope and roughness tester. The results show that the arithmetic average value of roughness (
R
a
) on the surface of channel can reach 170 nm
when the laser power is 10 W
scanning speed is 6 mm/s; channel length is 80 mm and processing times is 3. Therefore
the method of processing micron-size channel on PET substrate by using CO
2
laser is completely feasible.
BECKER H, LOCASCIO L E. Polymer microfluidic devices[J]. Talanta, 2002, 56(2):267-287.
BECKER H, GÄRTNER C. Polymer microfabrication methods for microfluidic analytical applications[J]. Electrophoresis, 2000, 21(1):12-26.
SOPER S A, FORD S M, QI S, et al.. Peer reviewed:polymeric microelectromechanical systems[J]. Analytical Chemistry, 2000, 72(19):642 A-651.
HOFFMANN M A, KOPKA P, VOGES E. Bistable micromechanical fiber-optic switches on silicon with thermal actuators[J]. Sensors and Actuators A:Physical, 1999, 78(1):28-35.
ROBERTS M A, ROSSIER J S, BERCIER P, et al.. UV laser machined polymer substrates for the development of microdiagnostic systems[J]. Analytical Chemistry, 1997, 69(11):2035-2042.
LIU A L, HE F Y, HU Y L, et al.. Plastified poly (ethylene terephthalate)(PET)-toner microfluidic chip by direct-printing integrated with electrochemical detection for pharmaceutical analysis[J]. Talanta, 2006, 68(4):1303-1308.
DADSETAN M, MIRZADEH H, SHARIFI-SANJANI N. Surface modification of polyethylene terephthalate film by CO2 laser-induced graft copolymerization of acrylamide[J]. Journal of Applied Polymer Science, 2000, 76(3):401-407.
TENNICO Y H, KOESDJOJO M T, KONDO S, et al.. Surface modification-assisted bonding of polymer-based microfluidic devices[J]. Sensors and Actuators B:Chemical, 2010, 143(2):799-804.
HILLMAN J, SUKHMAN Y, MILLER D, et al.. Multi wave hybrid laser processing of micrometer scale features for flexible electronics applications[J].SPIE, 2016, 9736:97360E.
TAGUCHI G, YOKOYAMA Y. Taguchi Methods:Design of Experiments[M]. Amer Supplier Inst, 1993.
0
浏览量
199
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构