浏览全部资源
扫码关注微信
1. 江苏大学 机械工程学院,江苏 镇江,212013
2. 常州信息职业技术学院 机电工程学院,江苏 常州,213164
收稿日期:2016-05-31,
修回日期:2016-06-12,
纸质出版日期:2016-11-14
移动端阅览
孟宪凯, 周建忠, 谭文胜等. 液氮温度下激光冲击波对Al-Cu合金的强化机理[J]. 光学精密工程, 2016,24(10s): 245-251
MENG Xian-kai, ZHOU Jian-zhong, TAN Wen-sheng etc. Reening mechanism of laser shock wave in Al-Cu alloy at liquid nitrogen temperature[J]. Editorial Office of Optics and Precision Engineering, 2016,24(10s): 245-251
孟宪凯, 周建忠, 谭文胜等. 液氮温度下激光冲击波对Al-Cu合金的强化机理[J]. 光学精密工程, 2016,24(10s): 245-251 DOI: 10.3788/OPE.20162413.0245.
MENG Xian-kai, ZHOU Jian-zhong, TAN Wen-sheng etc. Reening mechanism of laser shock wave in Al-Cu alloy at liquid nitrogen temperature[J]. Editorial Office of Optics and Precision Engineering, 2016,24(10s): 245-251 DOI: 10.3788/OPE.20162413.0245.
采用数值模拟与实验研究相结合的方法探索深冷激光冲击波在Al-Cu合金中的传播特性及其诱导的塑性行为。使用分子动力学软件Lammps建立了Al-Cu合金的分子动力学模型,分别在常温(293 K)以及液氮温度(77 K)下获得了激光冲击波速度与冲击波压力随粒子速度的变化规律。然后,分析了激光冲击波诱导的位错演变过程。最后对模拟结果进行了实验验证。结果表明,激光冲击波在液氮温度下的冲击波速度高达7.31 km/s,冲击波压力高达25.93 GPa,略高于常温激光冲击波;另一方面,深冷激光冲击诱导的位错结构更加稳定有序,最高位错原子数可达104 381,比常温激光冲击波增加了近30.5%。这是因为超低温环境中,Al-Cu合金具有更加稳定的FCC晶格结构,原子间距较短且原子排列均匀一致,这不仅有利于冲击波能量在晶格间的传递,使深冷激光冲击波速度与冲击波压力高于常温激光冲击波,还有利于位错的形核与扩展,进而获得较常温激光冲击更优良的表面强化效果。
The propagation and strengthening mechanism of cryogenic laser shock in Al-Cu alloy were studied through numerical simulations and experiments. Firstly
the molecular dynamic model of Al-Cu alloy was established by Lammps software. Based on the modal
the variations of shock velocity and shock pressure respectively with particle velocity were obtained at room-temperature (293 K) and Liquid Nitrogen Temperature (LNT) (77 K). Then the evolution of dislocations induced by laser shock wave was analyzed. Finally
the simulation was proved by experiments. The results indicate that the shock velocity and pressure induced by laser shock wave at LNT are 7.31 km/s and 25.93 GPa respectively
which are greater than those at room-temperature. Moreover
the dislocations generated by cryogenic laser peening are more stable and uniform. The maximum atom number of dislocations is 104 381
which is approximately 30.5% more than that at room-temperature. The reason is that at NLT
Al-Cu alloy has better FCC lattices with short atomic spacing and uniform atoms arrangement
which not only accelerates the energy transfer between two adjacent lattices leading to the increases of the shock velocity and pressure induced by cryogenic laser peening
but also promotes the nucleation and growth of dislocations resulting in a better strengthening performance compared with cryogenic laser shock peening at room temperature.
YE C, SUSLOV S, LIN D, et al.. Cryogenic ultrahigh strain rate deformation induced hybrid nanotwinned microstructure for high strength and high ductility[J]. Journal of Applied Physics, 2014, 115(21):213519.
YE C, SUSLOV S, LIN D, et al.. Microstructure and mechanical properties of copper subjected to cryogenic laser shock peening[J]. Journal of Applied Physics, 2011, 110(8):083504.
YE C, SUSLOV S, LIN D, et al.. Deformation-induced martensite and nanotwins by cryogenic laser shock peening of AISI 304 stainless steel and the effects on mechanical properties[J]. Philosophical Magazine, 2012, 92(11):1369-1389.
NEDIALKOV N N, IMAMOVA S E, ATANASOV P A. Mechanism of ultrashort laser ablation of metals:molecular dynamics simulation[J]. Applied Surface Science, 2005, 247(1):243-248.
LIU X, WANG Y. Femtosecond laser ablation of metals:a molecular dynamics simulation study[J]. Chinese Optics Letters, 2005, 3(1):57-59.
何安民, 邵建立, 秦承森,等. 单晶Cu冲击加载及卸载下塑性行为的微观模拟[J]. 物理学报, 2009, 58(8):5667-5672. HE A M, SHAO J L, QIN CH S. Molecular dynamics simulation of the anisotropy of surface melting of metal Al[J]. Acta Physica Sinica, 2009, 58(8):5667-5672. (in Chinese)
BRINGA E M, CAZAMIAS J U, ERHART P. Atomistic shock Hogoniot simulation of single-crystal copper[J]. Journal of Applied Physics, 2004, 96(7):3793-3799.
NOZAKI T, DOYAMA M, KOGURE Y. Simulation of high speed deformation of copper single crystals[J]. Materials Science and Engineering A, 2003, 350:233-237.
DAW M S, BASKES M I. Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals[J]. Physical Review Letters, 1983, 50(17):1285-1288.
陈开果, 祝文军, 马文. 冲击波在纳米金属铜中传播的分子动力学模拟[J]. 物理学报, 2010, 59(2):1225-1231. CHEN K G, ZHU W J, MA W. Propagation of shockwave in nanocrystalline copper molecular dynamics simulation[J]. Acta Physica Sinica, 2010, 59(2):12251231. (in Chinese)
LAMMPS Documentation manual[M/OL]. http://lammps.sandia.gov/doc/Manual.html.2013.
0
浏览量
770
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构