浏览全部资源
扫码关注微信
中国科学院 长春光学精密机械与物理研究所 超精密光学工程研究中心,吉林 长春,130033
收稿日期:2016-05-28,
修回日期:2016-06-10,
纸质出版日期:2016-11-14
移动端阅览
黄斌, 李显凌, 杨荟琦. 大口径光学元件疵病检测仪的结构设计[J]. 光学精密工程, 2016,24(10s): 259-266
HUANG Bin, LI Xian-ling, YANG Hui-qi. Structrual design of detector for optical elements with large aperture[J]. Editorial Office of Optics and Precision Engineering, 2016,24(10s): 259-266
黄斌, 李显凌, 杨荟琦. 大口径光学元件疵病检测仪的结构设计[J]. 光学精密工程, 2016,24(10s): 259-266 DOI: 10.3788/OPE.20162413.0259.
HUANG Bin, LI Xian-ling, YANG Hui-qi. Structrual design of detector for optical elements with large aperture[J]. Editorial Office of Optics and Precision Engineering, 2016,24(10s): 259-266 DOI: 10.3788/OPE.20162413.0259.
为了满足大口径光学元件表面疵病的光学检测需求,设计了一款具有四自由度的疵病检测仪。该检测仪采用4个独立驱动装置进行控制,基于坐标系矩阵变换的理论对该疵病检测仪的运动学进行了分析与解算,得到了末端检测物镜的轨迹坐标与各驱动位移的关系,同时得到了各随动运动与主动运动之间的关系曲线。采用虚拟样机仿真软件ADAMS对运动学解算结果进行仿真验证,得到了各驱动装置的位移-时间曲线。最后,通过ANSYS Workbench对检测物镜末端的静态位置偏差和镜筒支撑结构的模态进行了有限元分析。结果表明,镜筒末端最大的静态位置偏差为19.82
m,通过精密角度调节台1/36圈的精密螺距调节可将偏差控制在1
m以内,满足设计指标10
m的精度要求;镜筒支撑结构的一阶固有频率为882.58 Hz,确保工作频率远小于结构的一阶固有频率,避免共振对整体结构的破坏,保证了设备的可靠性与安全性。
In order to meet the requirements for surface defect detection of optical elements with large caliber in optical detection systems
a defect detector with four degrees of freedom was designed. The detector was controlled by four independent drive devices. The matrix transformation of coordinate system was employed to calculate the kinematics of the defect detector
involving the relationship between the trajectory coordinates of objective lens and displacement of actuators and the relationship between each follow-up servos and the active servo. The kinematics results were verified by ADAMS
a virtual prototype simulation software
obtaining the displacement-time curves. Furthermore
the static position deviation of objective lens and cantilever structure of the lens cone were analyzed by ANSYS Workbench. The results indicate that the maximum of static position deviation of lens is 19.82
m. The deviation can be decreased to less than 1
m by adjusting 1/36 round of precise pitch of precise angle adjustment
which can satisfy the design indices of 10
m. Moreover
the working frequency is far less than the first-order natural frequency of 882.58 Hz
which can avoid the destruction to the whole structure caused by syntony
thus verifying the reliability and safety of the equipment.
杨李茗, 叶海仙. 大口径大曲率半径光学元件的高精度检测[J]. 光学精密工程, 2011, 19(6):1207-1212. YANG L M, YE H X. High-precision metrology for optical components with large-apertures and large radii of curvature[J]. Opt. Precision Eng., 2011, 19(6):1207-1212. (in Chinese)
陈璐. 光学系统中光学零件表面疵病测试系统研究[D]. 长春:长春理工大学, 2013:1-10. CHEN L. Testing System Research on Surface Flaws of Optical Components in Optical System[D]. Changchun:Changchun University of Science and Technology, 2013:1-10.(in Chinese)
肖冰. 大口径光学元件表面疵病自动化检测系统关键问题讨论与研究[D]. 杭州:浙江大学, 2010:4-6. XIAO B. Research on the Key Issues of Automatic Defects Measurement on Large Fine Optics[D]. Hangzhou:Zhejiang University, 2010:4-6. (in Chinese)
刘长春. 一种新型超精密光学元件瑕疵检测装置开发[D]. 重庆:重庆大学, 2010:2-3. LIU CH CH. Employment of a New Equipment of Precise Optic Elements for Surface Cleanliness Level[D]. Chongqing:Chongqing University, 2010:2-3. (in Chinese)
田学光,田志兴,刘轩,等. 大型精密转台高精度角度微驱动装置的研制[J]. 光学精密工程, 2010, 18(5):1112-1118. TIAN X G, TIAN ZH X, LIU X, et al.. Development of angular micro driving device for large-scale and high accurate turntable[J]. Opt. Precision Eng., 2010, 18(5):1112-1118.(in Chinese)
何佳唯,平雪良,李朝阳,等. 机器人工作空间求解方法研究与应用[J]. 机械传动, 2015, 39(10):68-71. HE J W, PING X L, LI ZH Y, et al.. Research and application of the solving method for robotic workspace[J]. Mechanical Transmission, 2015, 39(10):68-71. (in Chinese)
郭耸. 水平四自由度装配机器人的设计及其运动学和动力学仿真分析[D]. 上海:上海交通大学, 2007:21-25. GUO S. Design of a Planar Four Degree of Freedom Assembly Robotic Arm and Kinematics and Dynamics Simulation[D]. Shanghai:Shanghai University of Transportation, 2007:21-25. (in Chinese)
赵燕江,张永德,姜金刚,等. 基于Matlab的机器人工作空间求解方法[J]. 机械科学与技术, 2009, 28(12):1657-1666. ZhAO Y J, ZHANG Y D, JIANG J G, et al.. A method for solving robot workspace based on matlab[J]. Mechanical Science and Technology for Aerospace Engineering, 2009, 28(12):1657-1666. (in Chinese)
游世明,陈思忠,梁贺明. 基于ADAMS的并联机器人运动学和动力学仿真[J]. 计算机仿真, 2005, 22(8):181-185. YOU SH M, ChEN S ZH, LIANG H M. Kinematics and dynamics simulation of PMT based on ADAMS[J]. Computer Simulation, 2005, 22(8):181-185. (in Chinese)
丁佳洛,战强. 基于ADAMS的串联机器人运动学反解与动力学优化[J]. 机电产品开发与创新, 2008, 21(1):9-11. DING J L, ZHAN Q. Inverse kinematics and dynamics optimization analysis of an articulated robot with ADAMS[J]. Development and Innovation of Machinery and Electrical Products, 2008, 21(1):9-11. (in Chinese)
宁波,吕志军,娄文斌. 基于ANSYS Workbench的堆垛机结构分析与优化[J]. 机械设计与制造, 2012, 6:71-73. NING B, LÜ ZH J, LOU W B. Analysis and optimization of stacker structure based on ANSYS workbench[J]. Machinery Design and Manufacture, 2012, 6:71-73. (in Chinese)
LI G, WANG B, DONG Sh, et al..Design and control of dual-stage feed drive system in ultra-precision machine tools[J]. Opt. Precision Eng., 2009, 17(6):1426-1430.
杨志敏,周健,李立君,等. 基于ANSYS Workbench的采摘机器人臂架模态分析[J]. 农机化研究, 2013, 12:56-62. YANG ZH M, ZHOU J, LI L J, et al. Modal analysis of the harvesting robot arm based on ANSYS workbench[J]. Research on Agricultural Mechanism, 2013, 12:56-62. (in Chinese)
石广丰,倪坤,史国权,等. 基于ANSYS Workbench的激光打孔机模态分析[J]. 长春理工大学学报, 2010, 33(4):95-97. SHI G F, NI K, SHI G Q, et al.. Modal analysis of the laser drilling machine based on ANSYS workbench[J]. Journal of Changchun University of Science and Technology, 2010, 33(4):95-97. (in Chinese)
陈颖,李东芳,于真真,等. 基于ANSYS Workbench平台参数化建模的撬座优化设计[J]. 石油化工设备, 2012, 41(1):33-35. CHEN Y, LI D F, YU ZH ZH, et al.. Simulation of equipment skid lifting process based on ANSYS workbench software[J]. Petro-Chemical Equipment, 2012, 41(1):33-35. (in Chinese)
0
浏览量
463
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构