浏览全部资源
扫码关注微信
1. 仪器科学与技术系, 上海交通大学 上海,200240
2. 上海航天控制技术研究所 上海,201109
3. 中国航天科技集团公司红外探测技术研发中心 上海,201109
收稿日期:2016-05-07,
修回日期:2016-06-12,
纸质出版日期:2016-11-14
移动端阅览
黄燕, 沈飞, 黄整章等. 压电式高精度位移微扫描控制系统设计[J]. 光学精密工程, 2016,24(10s): 454-460
HUANG Yan, SHEN Fei, HUANG Zheng-zhang etc. Micro-scanning control system design for piezoelectric high-precision displacement[J]. Editorial Office of Optics and Precision Engineering, 2016,24(10s): 454-460
黄燕, 沈飞, 黄整章等. 压电式高精度位移微扫描控制系统设计[J]. 光学精密工程, 2016,24(10s): 454-460 DOI: 10.3788/OPE.20162413.0454.
HUANG Yan, SHEN Fei, HUANG Zheng-zhang etc. Micro-scanning control system design for piezoelectric high-precision displacement[J]. Editorial Office of Optics and Precision Engineering, 2016,24(10s): 454-460 DOI: 10.3788/OPE.20162413.0454.
为了实现对微扫描系统的超分辨率成像,基于压电叠堆致动器,在现有微位移驱动平台的基础上设计了一种高精度位移控制系统。压电叠堆致动器材料本身的迟滞特性影响了系统的精度及稳定性,对其迟滞非线性的建模与补偿方法进行了研究。采用改进的Prandtl-Ishlinskii迟滞非线性模型的逆模型作为前馈控制器对其迟滞非线性进行补偿。通过测试微位移驱动平台的输出特性确定逆补偿模型的参数,逆模型结构简洁,系统的响应速度快,利于实时控制。实验结果表明该迟滞逆补偿控制系统能明显减小系统的迟滞非线性,最大的非线性误差为0.4
m。系统在微扫描驱动平台微位移放大的基础上实现了精确的二维定位。
To realize super-resolution imaging to micro-scanning system
a high-precision displacement control system is designed on the basis of piezoelectric stack actuator and existing micrometric displacement drive platform. Hysteresis characteristic of piezoelectric stack actuator material affects accuracy and stability of system
and research is performed to modeling and compensation method of its hysteretic nonlinearity. Adopt advanced inverse model of Prandtl-Ishlinskii hysteresis nonlinearity model as feedforward controller to compensate for its hysteretic nonlinearity. Confirm parameter of inverse compensation model by testing output characteristics of micrometric displacement drive platform. Structure of inverse model is simple
and response speed of system is quick
which is beneficial to real-time control. Experimental result shows that the hysteretic inverse compensation control system can obviously decrease hysteretic nonlinearity of system and the maximum nonlinear error is 0.4
m. System realizes accurate two-dimension positioning on the basis of micrometric displacement amplification of micro-scanning drive platform.
徐超, 金伟其, 李雅琼. 光学微扫描器技术及其实现方式[J]. 红外技术, 2006,28(6):338-342. XU CH, JIN W Q, LI Y Q. Optical micro-scanner technology and its implementation[J]. Infrared Technology,2006,28(6):338-342. (in Chinese)
张良, 仇振安, 杨小儒. 红外系统微扫描技术研究[J]. 激光与光电子学进展, 2012,49(4):137-142. ZHANG L,QIU ZH A, YANG X R. Micro scanning infrared system technology[J]. Laser & Optoelectronics Progress,2012,49(4):137-142. (in Chinese)
CHEN Y, JIN WQ, WANG LX. Multi-frame sub-pixel processing algorithm based on uncontrolled micro-scanning[J]. International Journal for Light and Electron Optics, 2011, 122(15):1341-1348.
SCIAU P, GOUDEAU P, TAMURA N. Micro scanning X-ray diffraction study of Gallo-Roman Terra Sigillata ceramics[J]. Applied Physics A, 2006, 83(2):219-224.
张栋, 张承进, 魏强. 压电微动工作台的动态磁滞模型[J]. 光学精密工程, 2009, 17(3):549-556. ZHANG D, ZHANG CH J, WEI Q. Dynamic hysteresis model of Piezopositioning platform[J]. Opt. Precision Eng.,2009, 17(3):549-556. (in Chinese)
李朋志. 压电驱动器磁滞补偿的模糊控制方法及应用[D]. 上海:上海交通大学, 2011. LI P ZH. Fuzzy Control and its application of hysteresis compensation about piezoelectric actuator[D]. Shanghai:Shanghai Jiaotong University,2011. (in Chinese)
谷国迎. 压电陶瓷驱动微位移平台的磁滞补偿控制理论和方法研究[D]. 上海:上海交通大学, 2012. GU G Y. Study on theory and method of hysteresis compensation about PZT micro-displacement control platform [D]. Shanghai:Shanghai Jiaotong University,2012. (in Chinese)
JILES D C, ATHERTON D L. Theory of ferromagnetic hysteresis[J]. Journal of Magnetism and Magnetic Materials, 1986, 61(1-2):48-60.
SMITH R, OUNAIE Z. A domain wall model for hysteresis in piezoelectric materials[J]. Journal of Intelligent Material Systems and Structures, 2000, 11(1):62-79.
MACHI J W, NISTBI P, ZECCA P. Mathematical models for hysteresis[J]. SIAM Review, 1993, 35(1):94-123.
SU C Y, STEPANENKO Y, SVOBODA J. Robust adaptive control of a class of nonlinear systems with unknown backlash-like hysteresis[J]. IEEE Transacdons on Automatic Control, 2000, 45(12):2427-2432.
EKANAYAKE D B, IYER R V. Study of a play-like operator[J]. Physica B:Condensed Matter, 2008, 403(2-3):456-459.
ZHOU J, WEN C, ZHANG C. Adaptive backstepping control of a class of uncertain nonlinear systems with unknown Backlash-like hysteresis[J]. Automatica, 2004, 49(10):1751-1759.
SU C Y, WANG Q Q, CHEN X K. Adaptive variable structure control of a class of nonlinear systems with unknown Prandtl-ishlinskii hysteresis[J]. IEEE Transactions on Automatic Control, 2005, 50(12):2069-2074.
杨斌堂, 赵寅, 彭志科. 基于Prandtl-Ishlinskii模型的超磁致伸缩驱动器实时磁滞补偿控制[J]. 光学精密工程, 2013, 21(1):124-130. YANG B T,ZHAO Y,PENG ZH K. Real-time hysteresis compensation control of giant magnetostrictive actuator based on Prandtl-Ishlinskii Model[J]. Opt. Precision Eng.,2013, 21(1):124-130. (in Chinese)
OH J, BERNSTEIN D S. Semilinear duhem model for rate-independent and rate-dependent hysteresis[J]. IEEE Transactions on Automatic Control, 2005, 50(5):631-645.
TAN U X, LATT W T, SHEE C Y. Feedforward controller of ill-conditioned hysteresis using singularity-free prandtl-ishlinskii model[J]. IEEE/ASME Transactions on Mechatronics, 2009, 14(5):598-605.
YI J, CHANG S, SHEN Y. Disturbance-observer-based hysteresis compensation for piezoelectric actuators[J]. IEEE/ASME Transactions on Mechatronics, 2009, 14(4):456-464.
JIANG H, JI H, QIU J. A modified Prandtl-Ishlinskii model for modeling asymmetric hysteresis of piezoelectric actuators[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57(5):1200-1210.
LI Q, CHEN W, WANG Y. Parameter identification for PEM fuel-cell mechanism model based on effective informed adaptive particle swarm optimization[J]. IEEE Transactions on Industrial Electronics, 2011,58(6):2410-2419.
0
浏览量
94
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构