浏览全部资源
扫码关注微信
1. 中国空间技术研究院 北京,100094
2. 哈尔滨工业大学 卫星技术研究所,黑龙江 哈尔滨,150001
收稿日期:2016-06-10,
修回日期:2016-07-17,
纸质出版日期:2016-11-14
移动端阅览
王爽, 耿云海, 宋道喆等. 星敏感器光学系统轨道空间外热流计算方法[J]. 光学精密工程, 2016,24(10s): 468-476
WANG Shuang, GENG Yun-hai, SONG Dao-zhe etc. Computational method for external heat flux of trajectory space on optical system of star sensor[J]. Editorial Office of Optics and Precision Engineering, 2016,24(10s): 468-476
王爽, 耿云海, 宋道喆等. 星敏感器光学系统轨道空间外热流计算方法[J]. 光学精密工程, 2016,24(10s): 468-476 DOI: 10.3788/OPE.20162413.0468.
WANG Shuang, GENG Yun-hai, SONG Dao-zhe etc. Computational method for external heat flux of trajectory space on optical system of star sensor[J]. Editorial Office of Optics and Precision Engineering, 2016,24(10s): 468-476 DOI: 10.3788/OPE.20162413.0468.
提出了一种基于反向蒙特卡罗法(RMC法)计算星敏感器光学系统表面空间外热流的方法。首先,设计环境映射面对星敏感器光学系统进行包覆,根据给定的轨道参数,确定不同时刻映射面接受环境热流的方向;然后,利用RMC法反向跟踪-统计从星敏感器光学系统表面面元发出的热射线能束,求出光学系统表面与映射面间的辐射传递因子;最后,计算得到光学系统表面的空间外热流。该方法不需计算辐射换热角系数可直接获得外热流密度,处理热射线反射-传递过程更加方便,能够计算存在遮挡情况下的飞行器表面空间外热流问题。仿真过程中分别针对两种在轨运行方案,计算得到了星敏感器光学系统受到的太阳辐射热流、地球红外辐射热流、地球反照辐射热流的大小;其中,特征点1、2、3、在方案一中接受到的空间外热流最大值分别为:1 008.54 W/m
2
、956.95 W/m
2
、477.88 W/m
2
,方案二中接受到的空间外热流最大值分别为:1 177.69 W/m
2
、1 055.55 W/m
2
、678.40 W/m
2
;仿真结果与理论分析保持一致,同时验证了方法的正确性和有效性。
A computational method which is on the basis of Reverse Monte Carlo method (RMC method) is put forward to calculate the external heat flux on the optical system of star sensor. Firstly
the environment mapping surface is designed to coat optical system of star sensor
and the direction of external heat flux where the environment mapping surface receives is confirmed according to the given orbital parameters in different time. Secondly
radiation transfer factor between the surface of optical system and the environment mapping surface is gained by tracking the heat rays which are transmitted from the optical system of star sensor with RMC method. Finally
the external heat flux on the optical system surface of star sensor is calculated and gained. The radiation coefficients do not need to be calculated in this method. And the density of external heat flux can be gained directly. It is more convenient to handle the reflection and transmission process of these heat rays. And especially
it is available to calculate the external heat flux on the shaded component. In the simulation
two kinds of on-orbit operation schemes are designed to simulate the solar radiation heat flux
the earth infrared radiation heat flux and the earth albedo radiation heat flux accepted by the optical system of star sensor
the maximum external heat flux accepted by feature point 1
2 and 3 in scheme one respectively are 1 008.55 W/m
2
、956.95 W/m
2
、477.88 W/m
2
. While in scheme two
the corresponding values are 1 177.69 W/m
2
、1 055.55 W/m
2
、678.40 W/m
2
. The simulation results conform to the theoretical analysis
and it verifies that the proposed method is correct and effective.
LIEBE C C. Star trackers for attitude determination[J]. Aerospace and Electronic System Magazine, IEEE, 1995, 10(6):10-16.
LI J L,YAN SH Z, CAI R Y. Thermal analysis of composite solar array subjected to space heat flux[J]. Aerospace Science and Technology, 2013, 27(6):84-94.
DONABEDIAN M, GILMORE D G. Spacecraft Thermal Control Handbook[M]. The Aerospace Press El Segundo, California, 2002.
HOWELL JR. TheMonte Carlo method in radiative heat transfer[J]. Journal of Heat Transfer, 1998, 120(8):547-560.
SUN X J, SMITH P J. A parametric case study in radiative heat transfer using the reverse Monte Carlo ray-tracing with full-spectrum k-distribution method[J]. Journal of Heat Transfer. 2010, 132(2):1-5.
HOWELL J R. The Monte Carlomethod in radiative heat transfer[J]. Journal of Heat Transfer, 1998, 120(3):547-560.
孙创,夏新林,戴贵龙. 飞行器复杂外结构的环境热流计算方法[J]. 宇航学报, 2011,32(3):683-687. SUN CH, XIA X L, DAI G L.A calculational method for environment heat flux on spacecraft with complicated structure[J]. Journal of Astronautics, 2011, 32(3):683-687. (in Chinese)
FOSTER J A, AGLIETTI G S. The thermal environment encountered in space by a multifunctional solar array[J]. Aerospace Science and Technology, 2010, 14(3):213-219.
刘暾,赵钧. 空间飞行器动力学[M].哈尔滨工业大学出版社,2003:153-162. LIU T, ZHAO J. Spacecraft Dynamics[M]. Harbin:Harbin Institute of Technology Press, 2003:153-162. (in Chinese)
PETER C.Hughes. Spacecraft Attitude Dynamics [M]. Dover Publications, INC, Mineola, New York, 2012.
PAN Q, WANG P Y, BAO Y Y, et al.. On-orbit external heat flux calculation of spacecraft based on reverse Monte Carlo method[J]. Journal of Shang Hai Jiao Tong University. 2012, 46(5):750-756.
NELSON H F. Backward Monte Carlo modeling for rocket plume base heating[J].Journal of Thermo-physics and Heat Transfer. 1992, 6(3):556-558.
KUMARS. Seasonal storage of energy in solar heating systems[J]. AIAA, 1976, 49(4):1-7.
ANTREASIAN P G, George W R.Prediction of radiant energy forces on the TOPEX/POSEIDON spacecraft[J]. Journal of Spacecraft and Rockets, 1992, 29(1):81-91.
0
浏览量
927
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构