浏览全部资源
扫码关注微信
1. 吉林大学 机械科学与工程学院, 吉林 长春 130022
2. 长春工业大学 机电学院,吉林 长春,130012
收稿日期:2016-05-07,
修回日期:2016-06-17,
纸质出版日期:2016-11-14
移动端阅览
张恩忠, 赵继, 冀世军等. 精密加工实验台热误差建模与补偿方法的对比分析[J]. 光学精密工程, 2016,24(10s): 520-526
ZHANG En-zhong, ZHAO Ji, JI Shi-jun etc. Contrastive analysis of modeling and compensation method of thermal error of precision machining experiment table[J]. Editorial Office of Optics and Precision Engineering, 2016,24(10s): 520-526
张恩忠, 赵继, 冀世军等. 精密加工实验台热误差建模与补偿方法的对比分析[J]. 光学精密工程, 2016,24(10s): 520-526 DOI: 10.3788/OPE.20162413.0520.
ZHANG En-zhong, ZHAO Ji, JI Shi-jun etc. Contrastive analysis of modeling and compensation method of thermal error of precision machining experiment table[J]. Editorial Office of Optics and Precision Engineering, 2016,24(10s): 520-526 DOI: 10.3788/OPE.20162413.0520.
为了提高精密加工实验台的运行精度,采用激光干涉仪、PT100等仪器测量了四轴数控平台
X、Z
轴的定位误差以及温度,并分析得到了
X、Z
轴定位误差与温度之间的变化规律。分别运用支持向量回归机(SVR)、RBF、BP神经网络方法建立了
X、Z
轴的热误差模型,并进行了对比分析,结果表明SVR模型的拟合性能和泛化能力等明显高于RBF、BP模型。依据SVR、RBF、BP热误差模型进行了误差补偿实验,实验结果表明,数控平台X轴定位误差最大降低了92.3%,Z轴定位误差最大降低了90.3%,SVR的预测能力、补偿精度和鲁棒性等均明显优于RBF、BP神经网络方法。
To improve operation accuracy of precision machining experiment table
instrument of laser interferometer and PT100 instrument etc. is adopted to measure position error of X and Z axis of four-axis numerical control platform and temperature. Varying pattern between position error of X and Z axis and temperature is analyzed and gained. Respectively employ support vector regression (SVR)
RBF and BP neural network method to establish thermal error model of X and Z axis and contrastive analysis is performed. Result shows that matching performance and generalization ability of SVR model are obviously greater than those of RBF and BP model. Error compensation experiment is performed according to thermal error model of SVR
RBF and BP and experimental result shows that position error of X axis of numerical control platform decreases by 92.3% to the largest degree
position error of Z axis decreases by 90.3% to the largest degree
and predictive capacity
compensation precision and robustness of SVR are obviously greater than those of RBF and BP neural network method.
李小彭,刘春时,马晓波,等. 数控机床加工精度提高技术的进展及其存在的问题[J].组合机床与自动化加工技术,2010,(11):1-4. LI X P,LIU CH SH,MA X B, et al..Improvemeng technology and research contents of machining accuracy for CNC machine tools[J].Modular Machine Tool and Automatic Manufacturing Technique,2010,(11):1-4.
郭宏杰,孙敬阳,王晓枫,等. 机床加工中的精度补偿技术[J].组合机床与自动化加工技术,2014,5:133-137. GUO H J,SUN J Y,WANG X F, et al..The Precision compensation technique during machining[J]. Modular Machine Tool and Automatic Manufacturing Technique, 2014,5:133-137.
仇健,张凯,李鑫,等. 国内外数控机床定位精度对比分析研究[J]. 组合机床与自动化加工技术,2013,8:1-3. QIU J,ZHANG K,LI X et al..Comparative analysis of accuracy of NC machine tools positioning home made and abroad made[J].Modular Machine Tool and Automatic Manufacturing Technique, 2013,8:1-3.
余文利,姚鑫骅,孙磊,等. 基于PLS和改进CVR的数控机床热误差建模[J].农业机械学报,2015,46(2):357-364. YU W L, YAO X H,SUN L, et al..Thermal error modeling of CNC machine tool based on partial least squares and ismprored core vector regression[J].Transactions of the Chinese Society for Agricultural Machinery, 2015,46(2):357-364.
杨建国,范开国,杜正春,等. 数控机床误差补偿技术[M].北京:机械工业出版社,2013. YANG J G,FAN K G,DU ZH,et al.. Real Time Error Compensation Technology for CNC Machine tools [M]. Beijing:China Machine Press,2013.
YEE K W,GAVIN R J. Implement fast part probing and error compensation on machine tools[R]. Technical Report NISTIR-4447, National Institute of Standards and Technology, Gaithersburg, MD, 1990.
LUTTERVELT C A,PENG J. Symbiosis of modeling and sensing to improve the accuracy of workpieces in small batch machining operations[J]. The Internation Journal of Manufacturing Technology,1999,15(10):699-710.
张乃尧.神经网络与模糊控制[M]. 北京:清华大学出版社,1998. ZHANG N Y.Neural Network and Fuzzy Control [M]. Beijing:Tsinghua University Press, 1998.(in Chinese)
王建峰,张磊,陈国兴,等. 基于改进的网格搜索法的SVM参数优化[J]. 应用科技, 2012,9(3):28-31. WANG J F,ZHANG L,CHENG G X et al.. A parameter optimization method for an SVM based on improved grid search algorithm[J].Applied Science and Technology, 2012,9(3):28-31.(in Chinese)
张宏韬,姜辉,杨建国. 模糊神经网络理论在数控机床热误差补偿建模中的应用[J]. 上海交通大学学报, 2009,3(12):1950-1961. ZHANG H T,JIANG H,YANG J G. Application of fuzzy neural network theory in thermal error compension modeling of NC machine tool[J].Journal of Shanghai Jiaotong University,2009, 3(12):1950-1961.(in Chinese)
林伟青,傅建中,许亚洲,等. 基于LS-SVM与遗传算法的数控机床热误差辨识温度传感器优化策略[J]. 光学精密工程, 2008,16(9):1682-1687. LIN W Q,FU J ZH,XU Y ZH, et al..Optimal sensor placement for thermal error identification of NC machine tool based on LS-SVM and genetic algorithm[J].Opt.Precision Eng.,2008, 16(9):1682-1687.(in Chinese)
苗恩铭,龚亚运,成天驹,等. 支持向量回归机在数控加工中心热误差建模中的应用[J]. 光学精密工程, 2013,21(4):980-986. MIAO EN M,GONG Y Y,CHENG T J,et al..Application of support vector regression machine to thermal error modeling of machine tools[J]. Opt. Precision Eng.,2013,21(4):980-986.(in Chinese)
汪样兴,王树林,张云峰,等.数控机床热误差灰色神经网络补偿应用研究[J]. 机械设计与制造,2014,(7).236-239. WANG Y X,WANG SH L,ZHANG Y F, et al..Application research and grey neural nsetwork compensation to thermal error modeling on NC machine tools[J]. Machinery Design and Manufacture,2014,(7).236-239.(in Chinese)
邓乃杨,田英杰. 支持向量机-理论、算法与拓展[M].北京:科学出版社,2009. DENG N Y,TIAN Y J. Support Vector Machines-Theroy, Algorithms and Development[M]. Beijing:Science Press,2009.(in Chinese)
VAPINK V N.Statistical learning theory[J].Encyclopedia of the Sciences of Learning,2010,41(4):3185-3185.
陈诗一. 非参数支持向量回归和分类理论及其在金融市场预测中的应用[M].北京:北京大学出版社,2007. CHEN SH Y. The Nonparamenlric Theory of Support Vector Regression and Classificationg with Application to Forecasting for Financial Markets[M].Beijing:Peking Univesity Press,2007.(in Chinese)
杨军,梅雪松,赵亮,等. 基于模糊聚类测点优化与向量机的坐标镗床热误差建模[J]. 上海交通大学学报, 2014,48(8):1175-1188. YANG J,MEI X S,ZHAO L,et al..Thermal error modeling of a coordinate boring machine baesd on fuzzy clustering and SVM[J].Journal of Shanghai Jiaotong University,2014, 48(8):1175-1188.(in Chinese)
白鹏,张喜斌,张斌,等. 支持向量机理论及工程应用实例[M].西安:西安电子科技大学出版社,2008. BAI P,ZHANG X B,ZHANG B, et al.. Support Vector Machine and its Application in Mixed Gas Infrared Spectrum Analysis[M].Xi'an:Xi'an Electronic Sience and Technology University Press,2008.(in Chinese)
王建国,张文兴,等. 支持向量机建模及其智能优化[M].北京:清华大学出版社,2015. WANG J G,ZHAG W X,et al..Support Vector Machine Modeling and its Intelligent Optimization[M].Beijing:Tsinghua University Press,2015.(in Chinese)
0
浏览量
884
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构