浏览全部资源
扫码关注微信
1. 南京航空航天大学 机械结构力学及控制国家重点实验室,江苏 南京,210016
2. 华侨大学机电及自动化学院, 福建 厦门 361021
收稿日期:2016-05-10,
修回日期:2016-06-17,
纸质出版日期:2016-11-14
移动端阅览
黄卫清, 刘雪瑞, 王寅等. 菱形压电微位移作动器的设计[J]. 光学精密工程, 2016,24(10s): 527-534
HUANG Wei-qing, LIU Xue-rui, WANG Yin etc. Design of piezoelectric micro displacement actuator[J]. Editorial Office of Optics and Precision Engineering, 2016,24(10s): 527-534
黄卫清, 刘雪瑞, 王寅等. 菱形压电微位移作动器的设计[J]. 光学精密工程, 2016,24(10s): 527-534 DOI: 10.3788/OPE.20162413.0527.
HUANG Wei-qing, LIU Xue-rui, WANG Yin etc. Design of piezoelectric micro displacement actuator[J]. Editorial Office of Optics and Precision Engineering, 2016,24(10s): 527-534 DOI: 10.3788/OPE.20162413.0527.
为了在提高压电作动器行程的同时,实现双向对称驱动,提出了基于三角位移放大原理的菱形压电微位移作动器。分析了作动器的运动及放大机理,并基于压电方程建立了作动器的理论静力模型。放大机构的关键参数被详细介绍。行程达105
μ
m,驱动器放大倍数与理论值只有5.69%的误差。样机实验刚度大于理论值。制作了实验样机,开环条件下的输出特性实验表明:静力条件下,作动器作动方向的平均刚度约0.62 N/
μ
m、单向自由伸长位移最大达42.2
μ
m(160 V电压下)、最大负载27.4 N(160 V电压下),均小于理论解(误差不超过24.2%),但其位移-力-电压关系符合理论模型的推论:输出位移与控制电压、负载成正比;非静态条件下,输出位移的迟滞效应明显,双向作动性能对称。最大位移达99.1
μ
m(180 V电压下),且位移随频率增加有小幅下降。作动器的启动特性良好,能够实现毫秒级快速响应(5.4 ms左右),并迅速稳定。作动器控制信号为阶梯波信号时,阶梯增量电压为0.2 V时,最小步进量为0.1
μ
m。作动器具有对称的双向作动特性和良好的启动特性,适用于精密定位或需要往复驱动特性对称的场合。
To realize bi-directional symmetry drive when piezoelectric actuator journey is improved simultaneously
rhombus piezoelectric micrometric displacement actuator on the basis of triangular displacement amplification theory is put forward. Analyze movement and amplification theory of actuator
and establish theoretical static force model of actuator on the basis of piezoelectric equation. Key parameter of magnifying mechanism is introduced in detail. When journey is 105
μ
m
error between magnification times of actuator and theoretical value is 5.69%. Experiment rigidity of model machine is greater than theoretical value. Experiment model machine is manufactured. Output characteristic experiment under open loop condition shows that under static force condition
average rigidity of actuator in actuation direction is about 0.62 N/
μ
m and the maximum unidirectional free elongation displacement can be 42.2
μ
m(under 160 V voltage)
and the maximum load is 27.4 N(under 160 V voltage)
and all of them are smaller than theory resolution (error does not exceed 24.2%). But its displacement-force-voltage relationship conforms to deduction of theoretical model:output displacement is in direct proportion to control voltage and load. Under non-static condition
hysteresis effect of output displacement is obvious and bi-directional actuation performance is symmetrical. The maximum displacement can be 99.1
μ
m (under 180 V voltage)
and displacement decreases slowly with increasing of frequency. Starting characteristic of actuator is good
being able to realize millisecond-level quick response (about 5.4 ms)
and it is quick and stable. When control signal of actuator is step wave signal and when step increment voltage is 0.2 V
the minimum step-by-step quantity is 0.1
μ
m. Actuator has symmetrical bi-directional actuation characteristic and good starting characteristic
being applicable to precision positioning or condition where repeated drive characteristic symmetry is required.
TADIGADAPA S.Piezoelectric Microelectromechanical Systems-challengs and Opportunities[J]. Procedia Engineering, 2010,5:468-471.
张世忠. 用于SEM微纳操作的粘滑驱动精密运动定位台的研究[D]. 哈尔滨:哈尔滨工业大学, 2014. ZHANG SH ZH.Study on the precision motion positioning platform driven by stick slip for SEM micro nano manipulation[D]. Harbin:Harbin Engineering University, 2014:1-118. (in Chinese)
CHEN J, ZHANG C, XU M, et al.. Rhombic micro-displacement amplifier for piezoelectric actuator and its linear and hybrid model[J]. Mechanical Systems and Signal Processing. 2015(50-51):580-593.
朱华, 曹如意, 菅磊. 应用于干涉显微镜的直线压电作动器[J]. 光学精密工程, 2013,21(6):1524-1530. ZHU H,CAO R Y, JIAN L. Linear piezoelectric actuator applied to interference microscope[J].Opt. Precision Eng, 2013,21(6):1524-1530.(in Chinese)
UCHINO K. Ceramic Actuators:Principles and Applications[M]. MRS BULLETIN, 1993:42-48.
顾守东, 杨志刚, 江海,等.压电驱动液压放大式喷射系统[J]. 光学精密工程,2015(06):1627-1634. GU S D, YANG ZH G, JIANG H, et al.Piezooelectric driven hydraulic amplification jetting system[J]. Opt. Precision Eng, 2015,23(6):1627-1633.(in Chinese)
李会文, 吴晖辉, 胡俊峰. 一种位移放大微动平台的设计和特性分析[J]. 机床与液压, 2014(15):101-103. LI H W, WU H H, HU J F. Properties analysis and design of a displacement amplification micro-stage[J].Machine Tool & Hydraulics, 2014,42(15):101-103.(in Chinese)
LIU P, YAN P. A new model analysis approach for bridge-type amplifiers supporting nano-stage design[J]. Mechanism and Machine Theory. 2016, 99:176-188.
MURAOKA M, SANADA S. Displacement amplifier for piezoelectric actuator based on honeycomb link mechanism[J]. Sensors and Actuators A:Physical, 2010, 157(1):84-90.
马立, 谢炜, 刘波, 等. 柔性铰链微定位平台的设计[J]. 光学精密工程, 2014,22(2):338-345. MA L,XIE W,LIU B,et al..Design of micro-positioning stage with flexure hinge[J]. Opt. Precision Eng,2014,22(2):238-245.(in Chinese)
黄卫清, 史小庆, 王寅. 菱形压电微位移放大机构的设计[J]. 光学精密工程, 2015,23(3):803-809. HUANG W Q, SHI X Q,WANG Y.Desigh of Diamond Piezoelectric Micro Displacement Amplification Mechanism[J].Opt. Precision Eng, 2015,23(3):803-809.(in Chinese)
PREUMONT A. Piezoelectric systems[M]. Springer Netherlands, 2006, 95-130.
陶宝琪.智能材料结构[M].北京:国防工业出版社,1996. TAO B Q.Intelligent Material Structure[M],Beijing:National Defence Industry Press,1996.(in Chinese)
0
浏览量
592
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构