浏览全部资源
扫码关注微信
哈尔滨工业大学 机电工程学院,黑龙江 哈尔滨,150001
收稿日期:2016-04-07,
修回日期:2016-05-10,
纸质出版日期:2016-11-14
移动端阅览
吴石磊, 邵忠喜, 张文辉等. 面向大口径光栅拼接的5TSP-PPS并联机构位置正解分析[J]. 光学精密工程, 2016,24(10s): 535-542
WU Shi-lei, SHAO Zhong-xi, ZHANG Wei-Hui etc. Forward displacement analysis for 5TSP-PPS parallel mechanism of large aperture grating tiling[J]. Editorial Office of Optics and Precision Engineering, 2016,24(10s): 535-542
吴石磊, 邵忠喜, 张文辉等. 面向大口径光栅拼接的5TSP-PPS并联机构位置正解分析[J]. 光学精密工程, 2016,24(10s): 535-542 DOI: 10.3788/OPE.20162413.0535.
WU Shi-lei, SHAO Zhong-xi, ZHANG Wei-Hui etc. Forward displacement analysis for 5TSP-PPS parallel mechanism of large aperture grating tiling[J]. Editorial Office of Optics and Precision Engineering, 2016,24(10s): 535-542 DOI: 10.3788/OPE.20162413.0535.
为了满足大口径光栅拼接装置大负载、高精度、高稳定性的要求,提出了一种5TSP-PPS并联机构,并采用螺旋理论分析了该机构实现空间二维移动和三维转动(2T3R)的机构学原理。以机构的TS杆长为约束条件,基于矢量法建立约束方程,推导位置正、反解的非线性方程组。为提高位置正解的计算效率,将简化Newton法应用到位置正解分析。数值算例表明:与Newton相比,简化Newton法能提高位置正解的计算效率。位置正解计算结果与给定位姿的姿态误差小于8.510
-9
rad,位置误差小于810
-10
m,验证了5TPS-PPS并联机构位置正解分析的正确性。本研究为新型大口径光栅拼接装置的标定、误差分析以及位置闭环的实时控制等进一步研究奠定了基础。
To meet requirement of heavy load
high precision and high stability of heavy caliber grating tiling device
5TSP-PPS parallel mechanism is put forward
and screw theory is adopted to analyze mechanism theory of the mechanism to realize two-dimension movement and three-dimension movement (2T3R) of space. Take TS rod length as constraint condition and establish constraint equation on the basis of vector method and deduct nonlinear equation system of forward position and inverse position. To improve computational efficiency of forward position
apply simplified Newton method to forward position analysis. Numerical example shows that:compared with Newton
simplified Newton method can improve computational efficiency of forward position. Attitude error between computational result of forward position and given pose is lower than 8.510
-9
rad and location error is lower than 810
-10
m
which verifies correctness of forward position analysis of 5TPS-PPS parallel mechanism. The research lays a foundation for further study of calibration of new heavy caliber grating tiling device
error analysis and real-time control of closed position loop.
KESSLER T J, BUNKENBURG J, HUANG H, et al.. Demonstration of coherent addition of multiple gratings for high energy chirped-pulse ampli-fied lasers[J]. Opt. Lett., 2004, 29(6):635-637.
赵博, 郝德阜. 用拼接法获取大面积衍射光栅[J]. 光学精密工程, 2000, 8(5):503-507. ZHAO B, HAO D F. Tiling to make large area dif-fraction grating[J]. Opt. Precision Eng., 2000, 8(5):503-507. (in Chinese)
EZALI Y A, TABATA M K, KIHARA M H, et al.. Development of a segmented g ating mount system for FI REX-1[J]. Journal of Physics:Conference Series, 2008, 112(3):032027.
邵忠喜, 张庆春, 白清顺, 等. 高精度大口径光栅拼接装置的控制算法[J]. 光学精密工程, 2009, 17(1):158-165. SHAO ZH X, ZHANG Q CH, BAI Q SH, et al.. Design method of controlling device for tilinghigh pecision and large aperture grating[J]. Opt. Precision Eng., 2009, 17(1):158-165.. (in Chinese)
黄真, 赵永生, 赵铁石. 高等空间机构学[M]. 北京:高等教育出版社, 2006. HUANG ZH, ZHAO Y SH, ZHAO T SH.Advanced Spatial Mechanism[M]. Beijing:Higher Education Press, 2006.(in Chinese)
张英,廖启征,魏世民. 一般6-4台体型并联机构位置正解分析[J]. 机械工程学报, 2012,48(9):27-32. ZHANG Y, LIAO Q ZH, WEI SH M. Forward displacement analysis of a general 6-4 in-parallel platform[J]. Journal of Mechanical Engineering, 2012, 48(9):26-32. (in Chinese)
黄昔光,廖启征,魏世民,等. 基于Groebner-Sylvester法的一般6-6型台体并联机构位置正解[J]. 西安交通大学学报, 2008,42(3):300-303. HUANG X G, LIAO Q ZH, WEI SH M, et al.. Forward kinematics of general 6-6 Stewart mechanisms based on Grobner-Sylvester approach[J]. Journal of Xi'an Jiaotong University, 2008, 42(3):300-303. (in Chinese)
FAUGERE J C,LAZARD D. Combinatorial classes of parallel manipulators[J]. Mechanism and Machine Theory,1995,30(6):765-776.
陈学生,陈在礼,孔民秀,等. 基于神经网络的6-SPS并联机器人正运动学精确求解[J]. 哈尔滨工业大学学报,2002,34(1):120-123. CHEN X SH, CHEN Z L, KONG M X, et al.. An accurate solution for forward kinematics of 6-SPS Stewart platform based on neural network[J]. Journal of Harbin Institute of Technology, 2002, 34(1):120-123. (in Chinese)
郑春红,焦李成. 基于遗传算法的Stewart并联机器人位置正解分析[J]. 西安电子科技大学学报,2003,30(2):165-173. ZHENG CH H,JIAO L CH. Forward kinematics of a general Stewart parallel manipulator using the genetic algorithm[J]. Journal of Xidian University,2003,30(2):165-173. (in Chinese)
车林仙,何兵,易建,等. 对称结构Stewart机构位置正解的改进粒子群算法[J]. 农业机械学报, 2008,39(10):158-163. CHEL X, HE B, YI J, et al.. Improved particle swarm optimization for forward positional analysis of symmetrical Stewart parallel manipulators[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(10):158-163. (in Chinese)
卢启鹏,李勇军,彭忠琦,等. 六杆并联机构运动学正解研究及其在同步辐射光束线中的应用[J]. 光学精密工程,2008,10(16):1874-1879. LU Q P, LI Y J, PENG ZH Q, et al.. Forward kinematics of six-bar parallel mechanism and its applications in synchrotron radiation beam-line[J]. Opt. Precision Eng., 2008,10(16):1874-1879. (in Chinese)
方喜峰,赵若愚,吴洪涛,等. 6-UPS交叉杆型并联机床的运动学正解算法[J]. 机械工程学报,2012,48(13):56-60. FANGX F, ZHAO R Y, WU H T, et al.. Forward kinematics analysis of 6-UPS parallel machine tool with cross rod[J]. Journal of Mechanical Engineering, 2012, 48(13):56-60. (in Chinese)
耿明超,赵铁石,王唱,等. 基于拟Newton法的并联机构位置正解[J]. 机械工程学报, 2015,51(9):28-35. GENG M CH, ZHAO T SH, WANG CH, et al.. Direct position analysis of parallel mechanism based on quasi-newton method[J]. Journal of Mechanical Engineering, 2015, 51(9):28-35. (in Chinese)
李庆杨, 莫孜中, 祁力群. 非线性方程组的数值解法[M]. 北京:科学出版社, 1987. LI Q Y,MO Z ZH, QI L Q.Numerical Solution of the Nonlinear Equations[M]. Beijing:Science Press, 1987.
0
浏览量
444
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构