浏览全部资源
扫码关注微信
1. 南昌航空大学 航空制造工程学院,江西 南昌,330063
2. 中国人民解放军 94829部队, 江西 向塘,330201
收稿日期:2016-05-20,
修回日期:2016-06-10,
纸质出版日期:2016-11-14
移动端阅览
张运建, 秦国华, 侯源君等. 高速切削钛合金TC4的表面粗糙度预测与控制方法[J]. 光学精密工程, 2016,24(10s): 543-550
ZHANG Yun-jian, QIN Guo-hua, HOU Yuan-jun etc. Prediction and control of surface roughness for high speed machining of titanium alloy TC4[J]. Editorial Office of Optics and Precision Engineering, 2016,24(10s): 543-550
张运建, 秦国华, 侯源君等. 高速切削钛合金TC4的表面粗糙度预测与控制方法[J]. 光学精密工程, 2016,24(10s): 543-550 DOI: 10.3788/OPE.20162413.0543.
ZHANG Yun-jian, QIN Guo-hua, HOU Yuan-jun etc. Prediction and control of surface roughness for high speed machining of titanium alloy TC4[J]. Editorial Office of Optics and Precision Engineering, 2016,24(10s): 543-550 DOI: 10.3788/OPE.20162413.0543.
零件表面粗糙度是衡量工件表面质量的重要参数,实际加工中表面粗糙度的影响因数具有复杂性与不确定性。然而在众多因数中,切削参数对表面粗糙度具有显著影响,并且能够在加工中人为控制。因此,选取适合的切削参数,提高工件表面质量是一项非常重要的任务。本文采用均匀设计法进行钛合金TC4的切削实验,利用德国马尔MarSurf M 300C精密型表面粗糙度测量仪测得工件表面粗糙度,然后运用非线性回归求解技术,建立了表面粗糙度的预测模型。采用方差分析法检验预测模型的拟合度及各独立输入参数的显著性,并进行预测误差对比分析。实验结果表明,所建立的回归预测模型预测误差低至0.019%,具有精度高、可靠性强等特点。最后,提出了以最小表面粗糙度为目标,使用遗传算法优化求解技术,建立切削参数优化模型。这项研究的结果为加工表面粗糙度的预测提供理论上的依据,为提高加工表面质量提供切削参数的合理选择。
Surface roughness of part is an important parameter to measure surface quality of workpiece. In actual processing
impact factor of surface roughness is complex and uncertain
but in many factors
cutting parameter has obvious effect on surface roughness
and it can be controlled manually in processing. Therefore
selecting proper cutting parameter and improving surface quality of workpiece are a very important tasks. Uniform design method is adopted in this paper to perform cutting experiment of titanium alloy TC4. Measure surface roughness of workpiece with Marl MarSurf M 300C precise surface roughness tester of Germany
and then employ nonlinear regression solution technology to establish prediction model of surface roughness. Inspect fitting degree of prediction model and significance of each independent input parameter by adopting analysis of variance. Perform contrastive analysis of prediction error. Experimental result shows that prediction error of regression prediction model established is as low as 0.019% with feature of high precision and strong reliability etc. Finally it puts forward to take the minimum surface roughness as target
use genetic algorithm to optimize solution technology and establish optimization model of cutting parameter. The research result provides theoretical basis for prediction of surface roughness processing and provides reasonable choice of cutting parameter to improve surface quality of processing.
张利堂. 基于正交试验的高速铣削表面质量研究[J]. 机床与液压, 2014, 42(1):80-103. ZHANG L T. Research of surface quality of high-speed milling based on orthogonal experimment[J]. Machine Tool & Hydraulics, 2011, 22(13):1513-1518. (in Chinese)
刘丽娟, 吕明, 武文革, 等. 高速铣削钛合金Ti-6Al-4V切屑形态试验研究[J]. 机械工程学报, 2015, 51(3):196-205. LIU L J, L M, WU W G,et al.. Experimental study on the chip morphology in high speed milling Ti-6Al-4V alloy[J]. Journal of Mechanical Engineering, 2015, 51(3):196-205. (in Chinese)
NJUGUNA M J, GAO D, HAO Z P. Tool wear, Surface integrity and dimensional accuracy in turning Al2124SiCp (45%wt) metal matrix composite using CBN and PCD tools[J]. Research Journal of Applied Sciences, Engineering and Technology, 2013, 6(22):4138-4144.
张宝磊, 熊艺文, 王为庆, 等. 高速铣削TC4表面粗糙度预测模型研究[J]. 组合机床与自动化加工技术, 2015, 3:108-110. ZHANG B L, XIONG Y W, WANG W Q, et al..Research on surface roughness prediction model for high-speed milling TC4[J]. Modular Machine Tool & Automatic Manufacturing Technology, 2015, 3:108-110. (in Chinese)
王义强, 闰国琛,王晓军,等. 高速铣削工件表面粗糙度的预测[J]. 机械设计与制造, 2014, 11, 131-137. WANG Y Q, YAN G CH, WANG X J, et al.. Surface roughness prediction in high-speed milling[J]. Machinery Design & Manufacturing, 2014, 11, 131-137. (in Chinese)
BREZOCNIK M, KOVACIC M. Integrated genetic programming and genetic algorithm approach to predict surface roughness[J]. Materials and Manufacturing Processes, 2003, 18(3):475-491.
TUGRUL O, YIGIT K. Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks[J]. International Journal of Machine Tools and Manufacture, 2005, 45:467-479.
SUDHANSU R D, DEBABRATA D, AMARESH K. Experimental investigation into machinability of hardened AISI 4140 steel using TiN coated ceramic tool[J]. Measurement, 2015, 62:108-126.
ASHOK K S, BIDYADHAR S. Experimental investigations on machinability aspects in finish hard turning of AISI 4340 steel using uncoated and multilayer coated carbide inserts[J]. Measurement, 2012, 45:2153-2165.
RIBEIRO M V, MOREIRA M R V, FERREIRA J R. Optimization of titanium alloy (Ti6AI4V) machining[J]. Journal of Materials Processing Technology, 2003, 143-144:458-463.
EZAGWU E O, BONNEY J, YAMANE Y. An overview of the machinability of aeroengine alloys[J]. Journal of Materials Processing Technology, 2003, 134(2):233-253.
CHEHARON C H, JAWAID A. The effect of machining on surface integrity of titanium alloy Ti-6% Al-4% V[J]. Journal of Materials Processing Technology, 2005, 166:188-192.
QU J,BLAU P B, WATKINS T R, CAVIN O B, Kulkarni N S. Friction and wear of titanium alloys sliding against metal, polymer, and ceramic counterfaces[J]. Wear, 2005, 258(9):l348-1356.
DEAMLEY P A, DAHM K L, CIMENOGLU H. The corrosion wear behavior of thermally oxidized CP-Ti and Ti6A14V[J]. Wear, 2004, 256(5):469-479.
NURULAMIN A M, AHMAD E I, KHAIRUSSHIMA M K. Effectiveness of uncoated WC-Co and PCD inserts in end milling of titanium alloy Ti-6Al-4V[J]. Journal of Materials Processing Technology, 2007, 192:147-158.
姜增辉, 王琳琳, 石莉, 等. 硬质合金刀具切削Ti6Al4V的磨损机理及特征[J]. 机械工程学报, 2014, 50(1), 178-183. JIANGZ H, WANG L L, SHI L, et al.. Study on tool wear mechanism and characteristics of carbide tools in cutting Ti6Al4V[J]. Journal of Mechanical Engineering, 2014, 50(1), 178-183. (in Chinese)
0
浏览量
414
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构