浏览全部资源
扫码关注微信
西安电子科技大学 空间科学与技术学院,陕西 西安,710118
收稿日期:2016-04-19,
修回日期:2016-05-31,
纸质出版日期:2016-11-14
移动端阅览
赵春宇, 孙伟, 陈许蒙. 微惯性传感器加速的序列图像三维重建方法[J]. 光学精密工程, 2016,24(10s): 559-566
ZHAO Chun-yu, SUN Wei, CHEN Xu-meng. Accelerated 3D reconstruction method from image sequence based on inertial measurement unit[J]. Editorial Office of Optics and Precision Engineering, 2016,24(10s): 559-566
赵春宇, 孙伟, 陈许蒙. 微惯性传感器加速的序列图像三维重建方法[J]. 光学精密工程, 2016,24(10s): 559-566 DOI: 10.3788/OPE.20162413.0559.
ZHAO Chun-yu, SUN Wei, CHEN Xu-meng. Accelerated 3D reconstruction method from image sequence based on inertial measurement unit[J]. Editorial Office of Optics and Precision Engineering, 2016,24(10s): 559-566 DOI: 10.3788/OPE.20162413.0559.
针对运动恢复结构(SfM)算法求取姿态计算复杂度高的问题,提出了微惯性传感器(IMU)加速的序列图像三维重建方法。利用加速度计计算图像拍摄时刻,结合IMU传感器信息,解算地理坐标系下移动终端拍摄图像时的初始姿态矩阵与位置信息,通过光束平差法去除传感器噪声,使用全局一致性转换获取图像坐标系下的移动终端位姿信息。本方法利用IMU信息恢复序列图像对应的相机位姿,代替SfM算法中遍历匹配特征点求相机位姿的过程,简化了三维结构恢复的计算。实验结果表明:本方法将SfM算法三维结构恢复的速度提升了3倍,三角法重建模型与实际长度的误差低于4.9%,有效降低了SfM方法的计算复杂度,可用于大规模场景的快速重建。
Against the high complexity of posture calculation in Structure from Motion (SfM) algorithm
this paper proposed a method of accelerated 3D reconstruction of sequence image based on inertial measurement unit (IMU). Firstly
the captured moments of sequence image were caculated by accelerometer. Then
the initial orientation matrix and position information of mobile terminal at the captured moments were resolved according to moments and IMU's output data. Finally
sensor noise was removed by bundle adjustment
combined with global consistency rotation
the camera's pose information corresponding to sequence image were generated. Since we obtain the camera's position and orientation by the IMU's information
and the process of computing camera pose by traversing matching feature points in SfM algorithm was replaced
and the time consumption of 3D structure recovery was reduced. Experimental results show that the speed of 3D structure recovery in SfM algorithm is improved by 3 times
and the error between the model calculated length and the actual length is within 4.9%. The proposed approach effectively solves the time-consume problem with the structure from motion algorithm
it can be used for the rapid reconstruction of large scale scene.
SUN W, CHEN L, HU B, et al.. Binocular vision-based position determination algorithm and system[C]. 2012 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring (CDCIEM), 2012:170-173.
BELLS C. A kinect-based system for 3D reconstruction of sewer manholes[J]. Computer-Aided Civil and Infrastructure Engineering, 2015, 30(11):906-917.
ZHAO D, ZHOU Y, YU Y, et al.. A novel peak detection method of structured light stripes for 3d reconstruction[C]. 2011 International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), IEEE, 2011, 2:43-46.
SNAVELY N, SEITZ S M, SZELISKI R. Modeling the world from internet photo collections[J]. International Journal of Computer Vision, 2008, 80(2):189-210.
王欣, 袁坤, 于晓,等. 基于运动恢复的双目视觉三维重建系统设计[J]. 光学精密工程, 2014, 22(5):1379-1387. WANG X, YUAN K, YU X, et al. Design of binocular vision 3D reconstruction system based on motion recovery[J]. Opt. Precision Eng., 2014, 22(5):1379-1387.(in Chinese)
LUCIEER A, TURNER D, KING D H, et al.. Using an Unmanned Aerial Vehicle (UAV) to capture micro-topography of antarctic moss beds[J]. International Journal of Applied Earth Observation & Geoinformation, 2014, 27(4):53-62.
许志华, 吴立新, 刘军,等. 顾及影像拓扑的SfM算法改进及其在灾场三维重建中的应用[J]. 武汉大学学报:信息科学版, 2015, 40(5):599-606. XU ZH H, WU L X, LIU J, et al.. Modification of SfM algorithm referring to image topology and its application in 3-dimension reconstruction of disaster area[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5):599-606.(in Chinese)
WU C. Towards linear-time incremental structure from motion[C]. 2013 International Conference on 3DV, 2013:127-134.
GIANNAROU S, ZHANG Z, YANG G Z. Deformable structure from motion by fusing visual and inertial measurement data[C]. 2012 International Conference on Intelligent Robots and Systems (IROS), 2012:4816-4821.
TANSKANEN P, KOLEV K, MEIER L, et al.. Live metric 3D reconstruction on mobile phones[C]. Proceedings of the 2013 IEEE International Conference on Computer Vision, 2013:65-72.
LOWE D G. Distinctive image features from scale-invariant keypoints[C]. International Journal of Computer Vision, 2004:91-110.
SUN W, ZHAO C, CHEN L, et al.. Learning based particle filtering object tracking for visible-light systems[J]. Optik-International Journal for Light and Electron Optics, 2015, 126(19):1830-1837.
彭孝东, 张铁民, 李继宇,等. 基于传感器校正与融合的农用小型无人机姿态估计算法[J]. 自动化学报, 2015, 41(4):854-860. PENG X D, ZHANG T M, LI J Y, et al.. Attitude estimation algorithm of agricultural small-UAV based on sensors fusion and calibration[J]. Acta Automatica Sinica, 2015, 41(4):854-860.(in Chinese)
MADGWICK S O H. An efficient orientation filter for inertial and inertial/magnetic sensor arrays[J]. Report x-io and University of Bristol (UK), 2010.
MOULON P, MONASSE P, MARLET R. Adaptive structure from motion with a contrario model estimation[C]. Asian Conference on Computer Vision, Springer-Verlag, 2012:257-270.
0
浏览量
293
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构