浏览全部资源
扫码关注微信
1. 天津工业大学 电气工程与自动化学院 天津,300387
2. 天津工业大学 电子与信息工程学院, 天津 300387
3. 天津市光检测技术与系统重点实验室, 天津 300387
4. 伍伦贡大学 电气、计算机与通信工程学院, 新南威尔士州 澳大利亚 2522
收稿日期:2016-05-28,
修回日期:2016-06-09,
纸质出版日期:2016-11-14
移动端阅览
丁明君, 习江涛, 李光旭等. 基于三波长相移轮廓术的相位展开算法[J]. 光学精密工程, 2016,24(10s): 657-664
DING Ming-jun, XI Jiang-tao, LI Guang-xu etc. Phase unwrapping algorithm based on three-wavelength phase shift profilometry[J]. Editorial Office of Optics and Precision Engineering, 2016,24(10s): 657-664
丁明君, 习江涛, 李光旭等. 基于三波长相移轮廓术的相位展开算法[J]. 光学精密工程, 2016,24(10s): 657-664 DOI: 10.3788/OPE.20162413.0657.
DING Ming-jun, XI Jiang-tao, LI Guang-xu etc. Phase unwrapping algorithm based on three-wavelength phase shift profilometry[J]. Editorial Office of Optics and Precision Engineering, 2016,24(10s): 657-664 DOI: 10.3788/OPE.20162413.0657.
针对多波长相移轮廓术方法测量速度慢、测量范围局限的问题,本文提出了三波长相移轮廓术测量方法,实现了对表面有阶跃变化的彩色三维物体的测量。介绍了三波长相移轮廓术的等效波长和包裹相位的正问题。然后,从等效波长的相位求解入手,进而推导出三个独立光波的相位展开方程。通过分析相位噪声产生的原因,提出了基于展开相位的相位去噪方法。实验结果表明:该方法的平均测量精度为0.018 mm,普通台式机处理耗时0.308 s。通过比较测量精度、测量速度、算法稳定性以及适应光源的范围等,证明了所提方法比目前常用的格雷码法和多波长相移轮廓术更优越。
Aiming at problems of low measurement speed and limited measurement range for method of multi-wavelength phase shift profilometry
a three-wavelength phase shift profilometry was presented to realize the measurement of color three-dimensional object with step change on surface. Direct problem of equivalent wavelength and wrapped phase of three-wavelength phase shift profilometry was introduced. Then
starting with the phase solution of the equivalent wavelength
and therefore phase unwrapping equations of three independent light waves were deduced. By analyzing phase noise gener ation reasons
phase denoising method based on unwrapping phase was presented. Experimental results show that average measurement accuracy of the method is 0.018 mm; processing time of ordinary desktop computer is 0.308 s. By comparing measurement precision
measurement speed
algorithm stability
range of adaptive light source and other performances
it is proved that the proposed method is more superior to the commonly used gray code methods and multi-wavelength phase shift profilometry at present.
MALACARA D. Optical Shop Testing[M]. 3rd Edition, New York:John Wiley and Sons; 2007.
CREATH K. Step height measurement using two-wavelength phase-shifting interferometry[J]. Applied Optics,1987,26(14):2810-2816.
HAN P Y, DA F P, GAI S Y. Color structured light technology for high-speed 3D shape measurement based on Gray Code method[J]. Journal of Optoelectronics Laser, 2010,21(9):1359-64.
POLHEMUS C. Two-wavelength interferometry[J]. Applied Optics, 1973,12(9):2071-2074.
CHENG Y Y, WYANT J C. Two-wavelength phase shifting interferometry[J]. Applied Optics, 1984,23(24):4539-4543.
ONODERA R, ISHⅡ Y. Two-wavelength interferometry that uses a Fourier-transform method[J]. Applied Optics, 1998,37(34):7988-7994.
ZHANG H, CHEN W, TAN Y. Phase-unwrapping algorithm for the measurement of three-dimensional object shapes[J]. Applied Optics, 1994,33(20):4497-4500.
CHENG Y Y, WYANT JC. Multiple-wavelength phase shifting interferometry[J]. Applied Optics, 1985,24(6):804-807.
TOWERS DP, JONES JDC, TOWERS CE. Optimum frequency selection in multi-frequency interferometry[J]. Optics Letters, 2003,28(11):887-889.
TOWERS C E, TOWERS D P, JONES J D C. Absolute fringe order calculation using optimised multi-frequency selection in full-field profilometry[J]. Opt. Lasers in Eng., 2005,43(7):788-800.
PRIBANIC T, MRVO S, SALVI J. Efficient multiple phase shift patterns for dense 3D acquisition in structured light scanning[J]. Image and Vision Computing, 2010,28(8):12-255.
ZHANG S. Digital multiple wavelength phase shifting algorithm[C]. Conference on Optical Inspection and Metrology for Mon-optics Industrie, 2009.
ZHANG S. Phase unwrapping error reduction framework for a multiple-wavelength phase-shifting algorithm[J]. Optical Engineering, 2009,48(10):105601-1-8.
0
浏览量
409
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构