浏览全部资源
扫码关注微信
1.国防科技大学 光电科学与工程学院, 湖南 长沙 410073
2.海军驻湖南地区军事代表室, 湖南 湘潭 411100
3.空军第五电子对抗团, 辽宁 沈阳 110000
于旭东(1982-), 男, 吉林长春人, 讲师, 博士, 2005年、2011年于国防科技大学分别获得学士、博士学位, 主要从事激光陀螺及惯性导航系统的研究。E-mail:wind0909@163.com YU Xu-dong, E-mail:wind0909@163.com
[ "雷雯(1981-), 男, 湖南郴州人, 硕士, 2002年于湖南大学获得学士学位, 2012年于海军工程大学获得硕士学位, 现为中国人民解放军海军驻湖南地区代表室军代表, 主要从事惯性导航、传感器方面的研究。E-mail:navy_wenwen@sina.com" ]
收稿日期:2016-10-14,
录用日期:2016-12-6,
纸质出版日期:2017-02-25
移动端阅览
于旭东, 雷雯, 刘畅. 随机振动下光学谐振腔腔体形变及变动规律[J]. 光学精密工程, 2017,25(2):281-288.
Xu-dong YU, Wen LEI, Chang LIU. Deformation law of optical resonant cavity under random vibration environment[J]. Optics and precision engineering, 2017, 25(2): 281-288.
于旭东, 雷雯, 刘畅. 随机振动下光学谐振腔腔体形变及变动规律[J]. 光学精密工程, 2017,25(2):281-288. DOI: 10.3788/OPE.20172402.0281.
Xu-dong YU, Wen LEI, Chang LIU. Deformation law of optical resonant cavity under random vibration environment[J]. Optics and precision engineering, 2017, 25(2): 281-288. DOI: 10.3788/OPE.20172402.0281.
鉴于复杂环境会使激光陀螺谐振腔产生变形,从而严重影响激光陀螺的性能,本文利用有限元分析软件ANSYS仿真分析了典型随机振动谱(
g
RMS
=6.6
g
)下激光陀螺腔镜3个方向的微小形变量,分别为0.342 5"、0.349 4"和0.215 0",并结合矩阵光学理论定量得到了谐振腔光阑处的形变量。然后定量分析了不同曲率半径、不同腔长、不同入射角对光学四边形环形谐振腔的影响规律。最后,研究了球面镜-球面镜同时变化以及球面镜-平面镜同时变化下谐振光路的变动规律。实验结果表明,单纯考虑谐振腔的抗振性能,当
L
处于0~1 m,
R
处于1~8 m时,球面镜的曲率半径越小,腔长越短,四边形环形光学谐振腔所受外界环境的影响越小,两个腔镜同时变化时按照一定规律等效成单镜变化。本文研究可以为激光陀螺光学谐振腔的设计提供参考。
In view of the negative effects of resonant cavity deformation due to complex environments on performance of laser gyroscope
the slight deformations of mirror in three directions
which are 0.342 5"
0.349 4" and 0.215 0"
was simulated by ANSYS when the resonant cavity was under the function of standard random vibration spectrum (
g
RMS
=6.6
g
). Employing the theory of matrix optics
the deformation of the diaphragm was obtained quantitatively. Then
the deformation law of optical resonant cavity affected by radius of curvature
cavity length and incident angle was analyzed in an optical quadrangular cavity. Finally
the deformation law of optical path was derived when the spherical mirror and spherical mirror changed simultaneously or the spherical mirror and plane mirror changed simultaneously. Only considering the vibration resistance
the deformation of quadrangular cavity generated by the external environment is slighter with the smaller radius of curvature and the shorter cavity length when the radius of curvature ranges from 0 to 8 m and cavity length ranges from 0 to 1 m. Furthermore
the deformation law of two mirrors can be equivalent to that of a single mirror according to certain rules. The research can provide a reference for the design of optical resonant cavity of laser gyroscope.
于旭东, 王宇, 张鹏飞, 等.单轴旋转惯导系统中陀螺漂移的精确校准[J].光学精密工程, 2012, 20(6):1201-1207.
YU X D, WANG Y, ZHANG P F, et al.. Calibration of RLG drift in single-axis rotation INS[J]. Opt. Precision Eng., 2012, 20(6):1201-1207. (in Chinese)
杨昊东, 梁冬明, 岳寰宇, 等.环形激光器双光路椭圆度测量系统[J].光学精密工程, 2012, 20(9):1913-1921.
YANG H D, LIANG D M, YUE H Y, et al..Ellipticity measurement system with double beam paths for ring laser gyroscope[J]. Opt. Precision Eng., 2012, 20(9):1913-1921. (in Chinese)
ARNOWITZ F. Theory of a traveling-wave optical maser[J]. Physical Review, 1965, 139(3A):A635-A646.
LEVKIT A L, OVCHINNIKOV V M. Stability of a ring resonator with a nonplane axial contour[J]. Journal of Applied Spectroscopy (USSR), 1984, 40(6):657-660.
SHENG S C. Optical-axis perturbation singularity in an out-of-plane ring resonator[J]. Optics Letters, 1994, 19(10):683-685.
SIEGMAN A E. Laser beams and resonators:beyond the 1960s[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(6):1389-1399.
SMITH I W. Optical resonator axis stability and instability from first principles[J].SPIE, 1983, 412:203-206.
SIEGMAN A E. Lasers[M]. California:University Science, Mill Valley, 1986.
LONG X W, YUAN J. Optical-axis perturbation in triaxial ring resonators Ⅱ:Induced by spherical mirror's axial displacement[J].SPIE, 2010, 7579:75791G.
YUAN J, LONG X W, ZHANG B, et al.. Optical-axis perturbation in folded planar ring resonators[J]. Applied Optics, 2007, 46(25):6314-6322.
YUAN J, LONG X W. Optical-axis perturbation in nonplanar ring resonators[J]. Optical Communications, 2008, 281(5):1204-1210.
CHEN M X, YUAN J, LONG X W, et al.. General beam position controlling method for 3D optical systems based on the method of solving ray matrix equations[J]. Optics & Laser Technology, 2013, 54:343-346.
CHEN M X, YUAN J, LONG X W, et al..Reanalysis of optical-axis perturbation in nonplanar ring resonators in ray matrix approach with appropriate coordinate systems[J]. Optik-International Journal for Light and Electron Optics, 2013, 124(24):6776-6779.
YUAN J, LONG X W, LIANG L M. Optical-axis perturbation in triaxial ring resonators[J]. Applied Optics, 2008, 47(5):628-631.
YUAN J, LONG X W, CHEN M X. Generalized ray matrix for spherical mirror reflection and its application in square ring resonators and monolithic triaxial ring resonators[J]. Optics Express, 2011, 19(7):6772-6776.
WEN D D, LI D, ZHAO J L. Generalized sensitivity factors for optical-axis perturbation in nonplanar ring resonators[J]. Optics Express, 2011, 19(20):19752-19757.
于旭东, 龙兴武, 汤建勋.机械抖动激光陀螺的随机振动响应分析[J].光学精密工程, 2007, 15(11):1760-1766.
YU X D, LONG X W, TANG J X. Random vibration analysis of mechanically dithered ring laser gyroscope[J]. Opt. Precision Eng., 2007, 15(11):1760-1766. (in Chinese)
YU X D, LONG X W. Parametric design of mechanical dither with bimorph piezoelectric actuator for ring laser gyroscope[J]. International Journal of Applied Electromagnetics and Mechanics, 2015, 47(2):305-312.
CHEN L SH, HALL J L, YE J, et al.. Vibration-induced elastic deformation of Fabry-Perot cavities[J]. Physical Review A, 2006, 74(5):053801.
0
浏览量
127
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构