浏览全部资源
扫码关注微信
1.中国科学院 苏州生物医学工程技术研究所 江苏省医用光学重点实验室, 江苏 苏州 215163
2.中国科学院 磁性材料与器件重点实验室 & 功能材料与纳米器件事业部, 浙江 宁波 315201
3.中国科学院大学, 北京 100049
李辉 (1978-), 男, 山西运城人, 博士, 硕士生导师, 2005年于中国科学院物理研究所获得博士学位, 主要研究领域为光学显微成像和单分子生物物理。E-mail:hui.li@sibet.ac.cn LI Hui, E-mail:hui.li@sibet.ac.cn
[ "桂征宇 (1991-), 男, 江苏常州人, 硕士研究生, 2014年于扬州大学获得学士学位, 主要研究领域为光学显微成像。E-mail:guizhengyu14@mails.ucas.ac.cn" ]
收稿日期:2016-07-05,
录用日期:2016-9-2,
纸质出版日期:2017-02-25
移动端阅览
李辉, 桂征宇, 梁永, 等. 单分散上转换纳米荧光微粒的荧光寿命测量[J]. 光学精密工程, 2017,25(2):319-324.
Hui LI, Zheng-yu GUI, Yong LIANG, et al. Measurement of fluorescence life time of single up-conversion nanoparticle[J]. Optics and precision engineering, 2017, 25(2): 319-324.
李辉, 桂征宇, 梁永, 等. 单分散上转换纳米荧光微粒的荧光寿命测量[J]. 光学精密工程, 2017,25(2):319-324. DOI: 10.3788/OPE.20172402.0319.
Hui LI, Zheng-yu GUI, Yong LIANG, et al. Measurement of fluorescence life time of single up-conversion nanoparticle[J]. Optics and precision engineering, 2017, 25(2): 319-324. DOI: 10.3788/OPE.20172402.0319.
为了表征上转换纳米荧光微粒的发光特性,设计了一个可以对单个纳米微粒进行荧光寿命测量的系统。该系统首先使用基于检流计振镜的双光子显微镜系统对单分散状态的上转换纳米微粒样品进行扫描成像。然后,通过单分子荧光纳米定位算法精确找出每个纳米微粒的准确位置,再依次将激光聚焦到每个纳米微粒上,在该点施加一个500
μ
s宽度的激光脉冲,并通过光电倍增管探测随时间变化的荧光强度信号。最后对荧光衰减曲线进行拟合,计算得到该纳米微粒的荧光寿命。实验结果表明:单个上转换纳米荧光微粒的荧光发射曲线符合单指数衰减规律,其荧光寿命为195.3
μ
s。与之相比,聚集状态的纳米微粒的荧光寿命为358.9
μ
s。这表明聚集状态对上转换纳米微粒的发光特性有显著影响。
In order to characterize the photon luminescence properties of up-conversion nanoparticles (UCNPs)
a system to measure fluorescence life time of single nanoparticle was established based on a custom-built two-photon microscope scanned with a pair of galvo-mirrors. First
a sample of mono-disperse UCNPs was imaged by the two-photon microscope. Then
the exact location of each nanoparticle was precisely determined through the single molecule fluorescence localization algorithm. The laser was focused on the nanoparticles one by one with a laser pulse with 500
μ
s duration exerted on the nanoparticle. A photomultiplier was employed to measure the time-lapse fluorescence intensity which varied with time. Finally
the fluorescence decay curve was fitted to calculate the life time of single nanoparticle. The experiment results show that the fluorescence curves of single nanoparticle fit with single exponential decay
and the fluorescence life time is 195.3
μ
s. For contrast
the life time of the bulk sample is 358.9
μ
s. This indicates a dramatic effect of particle aggregation on the photon luminescence properties of UCNPs.
HABAZA M, GILBOA B, ROICHMAN Y, et al.. Tomographic phase microscopy with 180 rotation of live cells in suspension by holographic optical tweezers[J]. Optics Letters, 2015, 40(8):1881-1884.
张运海, 杨皓旻, 孔晨晖.激光扫描共聚焦光谱成像系统[J].光学精密工程, 2014, 22(6):1446-1453.
ZHANG Y H, YANG H M, KONG CH H. Spectral imaging system on laser scanning confocal microscopy[J]. Opt. Precision Eng., 2014, 22(6):1446-1453. (in Chinese)
PARK Y I, LEE K T, SUH Y D, et al.. Upconverting nanoparticles:a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging[J]. Chemical Society Reviews, 2015, 44(6):1302-1317.
WANG M, MI C C, WANG W X, et al.. Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF 4 :Yb, Er upconversion nanoparticles[J]. ACS Nano, 2009, 3(6):1580-1586.
BOUZIGUES C, GACOIN T, ALEXANDROU A. Biological applications of rare-earth based nanoparticles[J]. ACS Nano, 2011, 5(11):8488-8505.
PARK Y I, KIM J H, LEE K T, et al.. Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T 1 magnetic resonance imaging contrast agent[J]. Advanced Materials, 2009, 21(44):4467-4471.
SIA S K, LINDER V, PARVIZ B A, et al.. An integrated approach to a portable and low-cost immunoassay for resource-poor settings[J]. Angewandte Chemie International Edition, 2004, 43(4):498-502.
CHATTERJEE D K, RUFAIHAH A J, ZHANG Y. Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals[J]. Biomaterials, 2008, 29(7):937-943.
XU C T, ZHAN Q Q, LIU H C, et al.. Upconverting nanoparticles for pre-clinical diffuse optical imaging, microscopy and sensing:Current trends and future challenges[J]. Laser & Photonics Reviews, 2013, 7(5):663-697.
HOA D Q, UCHIMURA T, IMASAKA T, et al.. Fluorescence lifetime measurement of dibenzofuran and monochlorodibenzofuran[J]. Science and Technology of Advanced Materials, 2006, 7(7):714-717.
KAUR A, HAGHIGHATBIN M A, HOGANB C F, et al.. A FRET-based ratiometric redox probe for detecting oxidative stress by confocal microscopy, FLIM and flow cytometry[J]. Chemical Communications, 2015, 51(52):10510-10513.
DATTA R, ALFONSO-GARCÍA A, CINCO R, et al.. Fluorescence lifetime imaging of endogenous biomarker of oxidative stress[J]. Scientific Reports, 2015, 5:9848.
PELET S, PREVITE M J, KIM D, et al.. Frequency domain lifetime and spectral imaging microscopy[J]. Microscopy Research and Technique, 2006, 69(11):861-874.
FRUHWIRTH G O, AMEER-BEG S, COOK R, et al.. Fluorescence lifetime endoscopy using TCSPC for the measurement of FRET in live cells[J]. Optics Express, 2010, 18(11):11148-11158.
SUHLING K, FRENCH P M, PHILLIPS D. Time-resolved fluorescence microscopy[J]. Photochemical & Photobiological Sciences, 2005, 4(1):13-22.
徐玲玲.高精度荧光寿命成像方法及应用[D].武汉:华中科技大学, 2013.
XU L L. High-precision Fluorescence Lifetime Imaging Method and its Applications[D]. Wuhan:Huazhong University of Science and Technology, 2013. (in Chinese)
熊大曦, 刘云, 梁永, 等.共振扫描显微成像中的图像畸变校正[J].光学精密工程, 2015, 23(10):2971-2979.
XIONG D X, LIU Y, LIANG Y, et al.. Correction of distortion in microscopic imaging with resonant scanning[J]. Opt. Precision Eng., 2015, 23(10):2971-2979. (in Chinese)
肖昀, 张运海, 王真, 等.入射激光对激光扫描共聚焦显微镜分辨率的影响[J].光学精密工程, 2014, 22(1):31-38.
XIAO Y, ZHANG Y H, WANG ZH, et al.. Effect of incident laser on resolution of LSCM[J]. Opt. Precision Eng., 2014, 22(1):31-38. (in Chinese)
0
浏览量
82
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构